Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

DNA barcoding and species delimitation: the Stylodrilus heringianus case (Annelida : Clitellata : Lumbriculidae)

Ainara Achurra A C and Christer Erséus B
+ Author Affiliations
- Author Affiliations

A Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country, Box 644, Leioa, Spain.

B Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 35 Göteborg, Sweden.

C Corresponding author. Email: ainara.achurra@ehu.es

Invertebrate Systematics 27(1) 118-128 https://doi.org/10.1071/IS12049
Submitted: 16 June 2012  Accepted: 22 November 2012   Published: 13 March 2013

Abstract

Individuals of the aquatic oligochaete species Stylodrilus heringianus Claparède, 1862 were collected across a part of this species’ distribution range in Sweden, Estonia, Great Britain and Spain to test whether they represent a single metapopulation or several separately evolving lineages. Using sequences of the barcoding gene cytochrome c oxidase subunit I (COI) and two nuclear genes (internal transcribed spacer region and histone 3), three different approaches were conducted: pairwise distance-method, Bayesian inference and network analysis. Both the COI phylogeny and network analyses were concordant in recovering six haplotype clusters, which showed a maximum genetic distance of 7.7% (K2P) among each other. Nevertheless, nuclear genes failed to confirm any lineage separation, and we conclude that the sampled specimens all belong to the same species. A phylogeographic history with allopatric divergence and secondary contact is suggested to explain this intraspecific pattern of mitochondrial divergence and nuclear non-divergence. The study shows that a mitochondrial single-locus approach can be problematic for the accurate delimitation of species, and we emphasise the need for nuclear genes as supplementary markers, when taxonomic resolution is assessed with COI barcodes.


References

Ballard, J. W. O., and Kreitman, M. (1995). Is mitochondrial DNA a strictly neutral marker? Trends in Ecology & Evolution 10, 485–488.
Is mitochondrial DNA a strictly neutral marker?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFegug%3D%3D&md5=e7f2884771f8b673e4b8c3b40c0bc07cCAS |

Bely, A. E., and Wray, G. A. (2004). Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrom oxidase I. Molecular Phylogenetics and Evolution 30, 50–63.
Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrom oxidase I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Sis7c%3D&md5=3cdb8d497b6372b25d251d00493f3b39CAS |

Ben-David, T., Melamed, S., Gerson, U., and Morin, S. (2007). ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental & Applied Acarology 41, 169–181.
ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlymur0%3D&md5=060570b178d0a31a1ee631de33fa4eb3CAS |

Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In ‘Evolution of Genes and Proteins’. (Eds M. Nei and R. K. Koehn.) pp. 62–88. (Sinauer: Sunderland, MA, USA.)

Brown, S., Rouse, G., Hutchings, P., and Colgan, D. (1999). Assessing the usefulness of histone H3, U2 snRNA and 28rDNA in analyses of polychaete relationships. Australian Journal of Zoology 47, 499–516.
Assessing the usefulness of histone H3, U2 snRNA and 28rDNA in analyses of polychaete relationships.Crossref | GoogleScholarGoogle Scholar |

Burton, T. E., and Davie, P. J. F. (2007). A revision of the shovel-nosed lobsters of the genus Thenus (Crustacea: Decapoda: Scyllaridae), with descriptions of three new species. Zootaxa 1429, 1–38.

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=c1e65e204898d5c13f1fa72aac7a5d47CAS |

Cook, D. G. (1967). Studies on the Lumbriculidae (Oligochaeta) in Britain. Journal of Zoology 153, 353–368.
Studies on the Lumbriculidae (Oligochaeta) in Britain.Crossref | GoogleScholarGoogle Scholar |

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar |

de Queiroz, K. (2011). Branches in the lines of descent: Charles Darwin and the evolution of the species concept. Biological Journal of the Linnean Society. Linnean Society of London 103, 19–35.
Branches in the lines of descent: Charles Darwin and the evolution of the species concept.Crossref | GoogleScholarGoogle Scholar |

DeSalle, R., Egan, M. G., and Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B. Biological Sciences 360, 1905–1916.
The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrnE&md5=81c4ea6547ddfd1b274f47f578e86b82CAS |

De Wit, P., and Erséus, C. (2010). Genetic variation and phylogeny of Scandinavian species of Grania (Annelida: Clitellata: Enchytraeidae), with the discovery of a cryptic species. Journal of Zoological Systematics and Evolutionary Research 48, 285–293.

Dowling, D. K., Friberg, U., and Lindell, J. (2008). Evolutionary implications of non-neutral mitochondrial genetic variation. Trends in Ecology & Evolution 23, 546–554.
Evolutionary implications of non-neutral mitochondrial genetic variation.Crossref | GoogleScholarGoogle Scholar |

Durand, J. D., Persat, H., and Bouvet, Y. (1999). Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe. Molecular Ecology 8, 989–997.
Phylogeography and postglacial dispersion of the chub (Leuciscus cephalus) in Europe.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzmtlalsQ%3D%3D&md5=4279a9f23bd75f2935c236c39fabaf34CAS |

Erséus, C., and Gustafsson, D. (2009). Cryptic speciation in clitellate model organisms. In ‘Annelids in Modern Biology’. (Ed. Dan Shain.) pp. 31–46. (John Wiley & Sons: Hoboken, NJ, USA.)

Evans, B. J., Carter, T. F., Tobias, M. L., Kelley, D. B., Hanner, R., and Tinsley, R. C. (2008). A new species of clawed frog (genus Xenopus) from the Itombwe Massif, Democratic Republic of the Congo: implications for DNA barcodes and biodiversity conservation. Zootaxa 1780, 55–68.

Ferguson, J. W. H. (2002). On the use of genetic divergence for identifying species. Biological Journal of the Linnean Society. Linnean Society of London 75, 509–516.
On the use of genetic divergence for identifying species.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Bergmann, P., Almodóvar, A., Díaz Cosín, D. J., and Heethoff, M. (2011). Ultrastructural and molecular insights into three populations of Aporrectodea trapezoids (Dugés, 1828) (Oligochaeta, Lumbricidae) with different reproductive modes. Pedobiologia 54, 281–290.
Ultrastructural and molecular insights into three populations of Aporrectodea trapezoids (Dugés, 1828) (Oligochaeta, Lumbricidae) with different reproductive modes.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=5041ee59b321d3be53c601c4defe3469CAS |

Funk, D. J., and Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397–423.
Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Gustafsson, D. R., Price, D. A., and Erséus, C. (2009). Genetic variation in the popular lab worm Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae) reveals cryptic speciation. Molecular Phylogenetics and Evolution 51, 182–189.
Genetic variation in the popular lab worm Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae) reveals cryptic speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFemtLc%3D&md5=5e043dc75c75ff045b63159501a2e72eCAS |

Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., and Herbert, P. D. N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103, 968–971.
DNA barcodes distinguish species of tropical Lepidoptera.Crossref | GoogleScholarGoogle Scholar |

Hayashi, M., and Chiba, S. (2000). Intraspecific diversity of mitochondrial DNA in the land snail Euhadra peliomphala (Bradybaenidae). Biological Journal of the Linnean Society. Linnean Society of London 70, 391–401.
Intraspecific diversity of mitochondrial DNA in the land snail Euhadra peliomphala (Bradybaenidae).Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, e312.
Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., and Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852–859.
The promise of DNA barcoding for taxonomy.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society B. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=a58e8054c576c226425e8c119c083c16CAS |

Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of the Royal Society B. Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=858650cdfbdb646ccebeddba089f0413CAS |

Hebert, P. D. N., Penton, E. H., Burns, J., Janzen, D. J., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly, Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14812–14817.
Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly, Astraptes fulgerator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=c5367a30163d4a7e036d6fcd4de51647CAS |

Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society. Linnean Society of London 58, 247–276.

Hewitt, G. M. (1999). Post-glacial recolonization of European Biota. Biological Journal of the Linnean Society. Linnean Society of London 68, 87–112.
Post-glacial recolonization of European Biota.Crossref | GoogleScholarGoogle Scholar |

Hickerson, M. J., Meyer, C. P., and Moritz, C. (2006). DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology 55, 729–739.
DNA barcoding will often fail to discover new animal species over broad parameter space.Crossref | GoogleScholarGoogle Scholar |

Källersjö, M., Von Proschwitz, T., Lundberg, S., Eldenäs, P., and Erséus, C. (2005). Evaluation of ITS rDNA as a complement to mitochondrial gene sequences for phylogenetic studies in freshwater mussels: an example using Unionidae from north-western Europe. Zoologica Scripta 34, 415–424.
Evaluation of ITS rDNA as a complement to mitochondrial gene sequences for phylogenetic studies in freshwater mussels: an example using Unionidae from north-western Europe.Crossref | GoogleScholarGoogle Scholar |

Koski, L. B., and Golding, G. B. (2001). The closest BLAST hit is often not the nearest neighbor. Journal of Molecular Evolution 52, 540–542.
| 1:CAS:528:DC%2BD3MXksFOiurs%3D&md5=f48696f5fbae2510378d0813362dd9fbCAS |

Kress, W. J., and Erickson, D. L. (2008). DNA barcodes: genes, genomics, and bioinformatics. Proceedings of the National Academy of Sciences of the United States of America 105, 2761–2762.
DNA barcodes: genes, genomics, and bioinformatics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVSjtb4%3D&md5=d0beb2683c6eea643099bc1b87726a5dCAS |

Kvist, S., Sarkar, I. N., and Erséus, C. (2010). Genetic variation and phylogeny of the cosmopolitan marine genus Tubificoides (Annelida: Clitellata: Naididae: Tubificinae). Molecular Phylogenetics and Evolution 57, 687–702.
Genetic variation and phylogeny of the cosmopolitan marine genus Tubificoides (Annelida: Clitellata: Naididae: Tubificinae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOhtrnJ&md5=6931aa4f59df92f0ca7abcc0f6d8408aCAS |

Kwong, S., Srivathsan, A., and Meier, R. (2012). An update on DNA barcoding: low species coverage and numerous unidentified sequences. Cladistics 28, 639–644.
An update on DNA barcoding: low species coverage and numerous unidentified sequences.Crossref | GoogleScholarGoogle Scholar |

Laakso, M. (1967). New records of aquatic Oligochaeta from Finland. Annales Zoologici Fennici 6, 348–352.

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.Crossref | GoogleScholarGoogle Scholar |

Li, Y., Zhou, X., Feng, G., Hu, H., Niu, L., Hebert, P. D. N., and Huang, D. (2010). COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources 10, 31–40.
COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7g%3D&md5=bd5c432e600086d9af4f70b1237ea011CAS |

Lou, M., and Golding, G. B. (2012). The effect of sampling from subdivided populations on species identification with DNA barcodes using a Bayesian statistical approach. Molecular Phylogenetics and Evolution 65, 765–773.
The effect of sampling from subdivided populations on species identification with DNA barcodes using a Bayesian statistical approach.Crossref | GoogleScholarGoogle Scholar |

Martin, P. R., and McKay, J. K. (2004). Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58, 938–945.

Meier, R. (2008). DNA sequences in taxonomy: opportunities and challenges. In ‘The New Taxonomy’. (Ed. Q. Wheeler.) (CRC Press: Boca Raton, FL, USA.)

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55, 715–728.
DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.Crossref | GoogleScholarGoogle Scholar |

Meier, R., Zhang, G. Y., and Ali, F. (2008). The use of mean instead of smallest interspecific distances exaggerates the size of the “Barcoding Gap” and leads to misidentification. Systematic Biology 57, 809–813.
The use of mean instead of smallest interspecific distances exaggerates the size of the “Barcoding Gap” and leads to misidentification.Crossref | GoogleScholarGoogle Scholar |

Milbrink, G. (1973). On the use of indicator communities of Tubificidae and some Lumbriculidae in the assessment of water pollution in Swedish lakes. Zoon 1, 125–139.

Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49, 718–726.
Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., and Cicero, C. (2004). DNA barcoding: promise and pitfalls. PLoS Biology 2, e354.
DNA barcoding: promise and pitfalls.Crossref | GoogleScholarGoogle Scholar |

Nygren, A., and Pleijel, F. (2011). From one to ten in a single stroke – resolving the European Eumidasanguinea (Phyllodocidae, Annelida) species complex. Molecular Phylogenetics and Evolution 58, 132–141.
From one to ten in a single stroke – resolving the European Eumidasanguinea (Phyllodocidae, Annelida) species complex.Crossref | GoogleScholarGoogle Scholar |

Nygren, A., Eklöf, J., and Pleijel, F. (2009). Arctic-boreal sibling species of Paranaitis. Marine Biology Research 5, 315–327.
Arctic-boreal sibling species of Paranaitis.Crossref | GoogleScholarGoogle Scholar |

Nygren, A., Eklöf, J., and Pleijel, F. (2010). Cryptic species of Notophyllum (Polychaeta: Phyllodocidae) in Scandinavian waters. Organisms, Diversity & Evolution 10, 193–204.
Cryptic species of Notophyllum (Polychaeta: Phyllodocidae) in Scandinavian waters.Crossref | GoogleScholarGoogle Scholar |

Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Posada, D., and Crandall, K. A. (2001). Intraspecific phylogenetics: trees grafting into networks. Trends in Ecology & Evolution 16, 37–45.
Intraspecific phylogenetics: trees grafting into networks.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., and Drummond, A. J. (2009). Tracer v1.5. Available at http://beast.bio.ed.ac.uk/Tracer

Rodriguez, P. (1988). Sur certaines espèces de Lumbriculidae (Annelida: Oligochaeta) du nord de la péninsule ibérique. Annales de Limnologie 24, 203–211.
Sur certaines espèces de Lumbriculidae (Annelida: Oligochaeta) du nord de la péninsule ibérique.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=c60b5f7b2a55d284223f3a076ea93fe5CAS |

Rubinoff, D., Cameron, S., and Will, K. (2006). A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. The Journal of Heredity 97, 581–594.
A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCru7jL&md5=bf74a6f149f53a2c0bfa8e775ef9ff15CAS |

Srivathsan, A., and Meier, R. (2012). On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 27, 1–15.

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web-servers.Crossref | GoogleScholarGoogle Scholar |

Steel, M. A., Hendy, M. D., and Penny, D. (1988). Loss of information in genetic distances. Nature 336, 118.
Loss of information in genetic distances.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FktVaisQ%3D%3D&md5=fa24d97b7b8a15c9189c845fca50b7b7CAS |

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).’ (Sinauer Associates, Sunderland, MA, USA.)

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=b8cf08dce6fdc7c2e66332a68e4a4aa4CAS |

Verovnik, R., Sket, B., and Trontelj, P. (2005). The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology 14, 4355–4369.
The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFahuw%3D%3D&md5=fab81852b9c176802eb453f290a4ab81CAS |

Vogler, A. P., and Monaghan, M. T. (2007). Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research 45, 1–10.
Recent advances in DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

White, T. J., Bruns, T., Lee, S., and Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: A Guide to Methods and Applications’. (Eds M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White.) pp. 315–322. (Academic Press: New York.)

Whitworth, T. L., Dawson, R. D., Magalon, H., and Baudry, E. (2007). DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings. Biological Sciences 274, 1731–1739.
DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVans7k%3D&md5=e665260e1eff6012bd2bdc6af15b7cc6CAS |

Will, K. W., and Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47–55.
Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification.Crossref | GoogleScholarGoogle Scholar |

Will, K. W., Mishler, B., and Wheeler, Q. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., Pang, X., Xu, H., Zhu, Y., Xiao, P., and Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 5, e13102.
Use of ITS2 region as the universal DNA barcode for plants and animals.Crossref | GoogleScholarGoogle Scholar |

Zhou, H., Fend, S. V., Gustafson, D. L., De Wit, P., and Erséus, C. (2010). Molecular phylogeny of Nearctic species of Rhynchelmis (Annelida). Zoologica Scripta 39, 378–393.
Molecular phylogeny of Nearctic species of Rhynchelmis (Annelida).Crossref | GoogleScholarGoogle Scholar |