Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia

Maria G. Asmyhr A D and Steven J. B. Cooper B C
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, SA 5005, Australia.

D Corresponding author. Email: maria.asmyhr@mq.edu.au

Invertebrate Systematics 26(6) 583-591 https://doi.org/10.1071/IS12032
Submitted: 26 April 2012  Accepted: 19 September 2012   Published: 19 December 2012

Abstract

The eastern Australian aquifers remain mostly unexplored; however, recent surveys suggest that there could be substantial levels of subterranean biodiversity hidden in these aquifers. Groundwater fauna (stygofauna) is often characterised by short-range endemism. Furthermore, high levels of cryptic species, and lack of formal taxonomic descriptions and taxonomic expertise for many of the groups demand innovative approaches for assessing subterranean biodiversity. Here we evaluate the potential of using DNA barcoding as a rapid biodiversity assessment tool for the subterranean groundwater fauna of New South Wales, Australia. We experienced low amplification success using universal and more taxon-specific primers for PCR amplification of the barcoding gene (COI) in a range of crustacean stygofauna. Sequence comparisons of the most commonly used COI universal primers in selected crustacean taxa revealed high levels of variability. Our results suggest that successful amplification of the COI region from crustacean stygofauna is not straightforward using the standard ‘universal’ primers. We propose that the development of a multiprimer (taxon specific) and multigene approach for DNA barcode analyses, using next-generation sequencing methodologies, will help to overcome many of the technical problems reported here and provide a basis for using DNA barcoding for rapid biodiversity assessments of subterranean aquatic ecosystems.


References

Abrams, K. M., Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., King, R. A., Cho, J.-L., and Austin, A. D. (2012). What lies beneath: molecular phylogenetics and ancestral state reconstruction of the ancient subterranean Australian Parabathynellidae (Syncarida, Crustacea). Molecular Phylogenetics and Evolution 64, 130–144.
What lies beneath: molecular phylogenetics and ancestral state reconstruction of the ancient subterranean Australian Parabathynellidae (Syncarida, Crustacea).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rht1Cnuw%3D%3D&md5=92717689ac9778051ad0a31fa9b5c384CAS |

Allford, A., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2008). Diversity and distribution of groundwater fauna in a calcrete aquifer: does sampling method influence the story? Invertebrate Systematics 22, 127–138.
Diversity and distribution of groundwater fauna in a calcrete aquifer: does sampling method influence the story?Crossref | GoogleScholarGoogle Scholar |

Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=815c439ad21fffe2f6b225ba242c3829CAS |

Bybee, S. M., Bracken-Grissom, H., Haynes, B. D., Hermansen, R. A., Byers, R. L., Clement, M. J., Udall, J. A., Wilcox, E. R., and Crandall, K. A. (2011). Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biology and Evolution 3, 1312–1323.
Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltF2mtbg%3D&md5=cd87603675e19aa350259828952d224dCAS |

Buhay, J. E. (2009). “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology 29, 96–110.

Camacho, A. I., Dorda, B. A., and Rey, I. (2011). Identifying cryptic speciation across groundwater populations: first co1 sequences of bathynellidae (crustacea, syncarida). Graellsia 67, 7–12.
Identifying cryptic speciation across groundwater populations: first co1 sequences of bathynellidae (crustacea, syncarida).Crossref | GoogleScholarGoogle Scholar |

Cook, B. D., Abrams, K. M., Marshall, J., Perna, C. N., Choy, S., Guzik, M. T., and Cooper, S. J. B. (2012). Species diversity and genetic differentiation of stygofauna (Syncarida: Bathynellacea) across an alluvial aquifer in north-eastern Australia. Australian Journal of Zoology 60, 152–158.

Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., and Humphreys, W. F. (2002). Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16, 589–590.
Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=0f26e3577d2ba19d9bd5f05951c30505CAS |

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Corse, E., Costedoat, C., Chappaz, M. I., Pech, N., Martin, J.-F., and Gilles, A. (2010). A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Molecular Ecology 10, 96–108.
A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ansLw%3D&md5=a179b38167275bbde485a4ee994abfa7CAS |

Costa, F. O., deWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M., and Hebert, P. D. (2007). Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64, 272–295.
Biological identifications through DNA barcodes: the case of the Crustacea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gqsbo%3D&md5=9d89bca9b399145dd7ed76fef409ae66CAS |

Culver, D. C., Kane, T., and Fong, D. W. (1995). ‘Adaptation and Natural Selection in Caves: the Evolution of Gammarus minus.’ (Harvard University Press: Cambridge, MA.)

Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2005). Stygofauna in the Pilbara region, north-west Western Australia: a review. Journal of the Royal Society of Western Australia 88, 167–176.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS |

Gardner, M. G., Fitch, A. J., Bertozzi, T., and Lowe, A. J. (2011). Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development.Crossref | GoogleScholarGoogle Scholar |

Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., Cho, J.-L., and Austin, A. D. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., Muirhead, K. A., and Tomlinson, M. (2010). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?Crossref | GoogleScholarGoogle Scholar |

Hancock, P. J., and Boulton, A. J. (2008). Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebrate Systematics 22, 117–126.
Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hardy, C. M., Krull, E. S., Hartley, D. M., and Oliver, R. L. (2010). Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Molecular Ecology 19, 197–212.
Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSrsb4%3D&md5=ca229e917e2661d5ea9e3067837d1ffdCAS |

Harvey, M. S. (2002). Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism amongst the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS |

Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14812–14817.
Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=0ae4f5812affc4879a365a936524c001CAS |

Hose, G. C. (2008). Stygofauna baseline assessment for Kangaloon Borefield Investigations – 354 Southern Highlands, NSW. Report to Sydney Catchment Authority, Access Macquarie Ltd, Sydney.

Humphreys, W. F. (2008). Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22, 85–101.
Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective.Crossref | GoogleScholarGoogle Scholar |

Johnsen, A., Rindal, E., Ericson, P. G. P., Zuccon, D., Kerr, K. C. R., Stoeckle, M. Y., and Lifjeld, J. T. (2010). DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. Journal fur Ornithologie 151, 565–578.
DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., and Cooper, S. J. B. (2011a). Molecular and morphological evidence for short range endemism in the Kinnecaris solitaria complex (Copepoda, Parastenocarididae), with descriptions of seven new species. Zootaxa 3026, 1–64.

Karanovic, T., and Cooper, S. J. B. (2011b). Third genus of parastenocarid copepods from Australia supported by molecular evidence (Harpacticoida: Parastenocarididae). In ‘Studies on Freshwater Copepoda: a Volume in Honour of Bernard Dussart’. Crustaceana Monographs 16. (Eds D. Defaye, J. C. von Vaupel Klein, and G. Wyngaard.) pp 283–326. (Brill: Leiden.)

Karanovic, T., and Cooper, S. J. B. (2012). Explosive radiation of the genus Schizopera Sars (Copepoda: Harpacticoida) in a small subterranean island in Western Australia: unravelling the cases of cryptic speciation, size differentiation, and multiple invasions. Invertebrate Systematics 26, 115–192.
Explosive radiation of the genus Schizopera Sars (Copepoda: Harpacticoida) in a small subterranean island in Western Australia: unravelling the cases of cryptic speciation, size differentiation, and multiple invasions.Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=78555c3dc7e755aed13a5a2a8c5b8747CAS |

Kondo, T., Gullan, P.J., and Williams, D.J. (2008). Coccidology: the study of scale insects (Hemiptera: Sternorrhynca: Coccoidea). Revista Corpoica – Ciencia y Technologica Agropercuaria 9, 55–61.

Korbel, K. L., and Hose, G. C. (2011). A tiered framework for assessing groundwater ecosystem health. Hydrobiologia 661, 329–349.
A tiered framework for assessing groundwater ecosystem health.Crossref | GoogleScholarGoogle Scholar |

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23, 2947–2948.
Clustal W and Clustal X version 2.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqsL%2FM&md5=93c22d261b96c96c28bfdeea564a5707CAS |

Lategan, M. J., Torpy, F. R., Newby, S., Stephenson, S., and Hose, G. C. (2012). Fungal diversity of shallow aquifers in southeastern Australia. Geomicrobiology Journal 29, 352–361.
Fungal diversity of shallow aquifers in southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Lemmon, A. R., Emme, S., and Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high throughput phylogenomics. Systematic Biology 61, 727–744.
Anchored hybrid enrichment for massively high throughput phylogenomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlsb3E&md5=e7c7e2a066ffdb289867c1cdaa43ea3eCAS |

Leys, R., and Watts, C. H. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22, 217–233.
Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus.Crossref | GoogleScholarGoogle Scholar |

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae, Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
Evolution of subterranean diving beetles (Coleoptera: Dytiscidae, Hydroporini, Bidessini) in the arid zone of Australia.Crossref | GoogleScholarGoogle Scholar |

Meusnier, I., Singer, G. A. C., Landry, J.-F., Hickey, D. A., Hebert, P. D. N., and Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214.
A universal DNA mini-barcode for biodiversity analysis.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S., Martin, A., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). The simple fool’s guide to PCR. Version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI.

Park, D.-S., Suh, S.-J., Oh, H.-W., and Hebert, P. D. N. (2010). Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC Genomics 11, 423.
Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers.Crossref | GoogleScholarGoogle Scholar |

Proudlove, G., and Wood, P. J. (2003). The blind leading the blind: cryptic subterranean species and DNA taxonomy. Trends in Ecology & Evolution 18, 272–273.
The blind leading the blind: cryptic subterranean species and DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Rogers, S. O., and Bendich, A. J. (1987). Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Molecular Biology 9, 509–520.
Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFartbw%3D&md5=c64fd0a10b372889e35d8ecf9f19f6a6CAS |

Schizas, N. V., Street, G. T., Coull, B. C., Chandler, G. T., and Quattro, J. M. (1997). An efficient DNA extraction method for small metazoans. Molecular Marine Biology and Biotechnology 6, 381–383.
| 1:CAS:528:DyaK1cXlvFGg&md5=9939709c8af59e6b02c6d1ef246b92eeCAS |

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spougea, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109, 6241–6246.
Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt12mu7o%3D&md5=fa2af83571cb3576b61aa56945dc4ea9CAS |

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=19fca4ef12a72211f41bc066c57d3b0dCAS |

Simon, C., Buckley, T. R., Frati, F., Stewart, J. B., and Beckenbach, A. T. (2006). Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 37, 545–579.
Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P., and Hales, D. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kgurk%3D&md5=5ddbf7facc43e398da045066d6d382d7CAS |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=ff48f25899fc988f16ef1534cf14445fCAS |

Thurgate, M. E., Gough, J. S., Spate, A., and Eberhard, S. (2001a). Subterranean biodiversity in New South Wales: from rags to riches. Records of the Western Australian Museum 64, 37–47.

Thurgate, M. E., Gough, J. S., Clarke, A. K., Serov, P., and Spate, A. (2001b). Stygofauna diversity and distribution in eastern Australian cave and karst areas. Records of the Western Australian Museum 64, 49–62.

Veltri, K. L., Espiritu, M., and Singh, G. (1990). Distinct genomic copy number in mitochondria of different mammalian organs. Journal of Cellular Physiology 143, 160–164.
Distinct genomic copy number in mitochondria of different mammalian organs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3gtlSnuw%3D%3D&md5=cc2c623afad7fa4caeae2003945dcaaaCAS |

Vences, M., Thomas, M., van der Meijden, A., Chiari, Y., and Vieites, D. R. (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology 2, 5.
Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians.Crossref | GoogleScholarGoogle Scholar |

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=ec74be10b2d9d122ee3aaa9703b7defcCAS |