Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding
D. Porco A H , A. Bedos B , Penelope Greenslade C , C. Janion D , D. Skarżyński E , M. I. Stevens F , B. Jansen van Vuuren G and L. Deharveng BA Université de Rouen – Laboratoire ECODIV, Bâtiment IRESE A, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
B Muséum National d’Histoire Naturelle, UMR7205 «Origine, Structure et Evolution de la Biodiversité», 45 rue Buffon, CP50, 75005 Paris, France.
C Environmental Management, School of Science, Information Technology and Engineering, University of Ballarat, Ballarat, Vic. 3353, Australia.
D Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag x1, Matieland 7602, South Africa.
E Zoological Institute, Wrocław University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
F South Australian Museum, GPO Box 234, Adelaide, SA 5000, and School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia.
G Centre for Invasion Biology, Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa.
H Corresponding author: Email: david.porco.gm@gmail.com
Invertebrate Systematics 26(6) 470-477 https://doi.org/10.1071/IS12026
Submitted: 15 April 2012 Accepted: 22 September 2012 Published: 19 December 2012
Abstract
Collembola is one of the major functional groups in soil as well as a model taxon in numerous disciplines. Therefore the accurate identification of specimens is critical, but could be jeopardised by cases of cryptic diversity. Several populations of six well characterised species of springtails were sequenced using the COI barcode fragment as a contribution to the global Collembola barcoding campaign. Each species showed high intraspecific divergence, comparable to interspecific sequence divergence values observed in previous studies and in 10 congeneric species barcoded here as a reference. The nuclear marker, 28S, confirmed all the intraspecific lineages found with COI, supporting the potential specific status of these entities. The implications of this finding for taxonomy and for disciplines relying on species names, such as evolution and ecology, are discussed.
References
Barateiro Diogo, J., Natal-Da-Luz, T., Paulo Sousa, J., Vogt, C., and Nowak, C. (2007). Tolerance of genetically characterized Folsomia candida strains to phenmedipham exposure – a comparison between reproduction and avoidance tests. Journal of Soils and Sediments 7, 388–392.Busmachiu, G., Deharveng, L., and Weiner, W. M. (2010). A new species of the genus Lathriopyga Caroli, 1912 (Collembola, Neanuridae, Neanurinae) from the Republic of Moldova. Zootaxa 2639, 53–58.
Carapelli, A., Fanciulli, P. P., Frati, F., and Dallai, R. (1995a). The use of genetic markers for the diagnosis of sibling species in the genus Isotomurus (Insecta, Collembola). Bollettino di Zoologia 62, 71–76.
| The use of genetic markers for the diagnosis of sibling species in the genus Isotomurus (Insecta, Collembola).Crossref | GoogleScholarGoogle Scholar |
Carapelli, A., Frati, F., Fanciulli, P. P., and Dallai, R. (1995b). Genetic differentiation of six sympatric species of Isotomurus (Collembola, Isotomidae) – is there any difference in their microhabitat preference? European Journal of Soil Biology 31, 87–99.
Cassagnau, P. (1976). Variability of polytene chromosomes in Bilobella aurantiaca Caroli (Collembola, Neanuridae) its relations with biogeography and ecology of species. Archives De Zoologie Experimentale Et Generale 117, 511–572.
Cassagnau, P. (1991). Les collemboles Neanurinae de l’Himalaya 2: Paranurini et Paleonurini paucitubercules. Travaux du Laboratoire d’Ecobiologie des Arthropodes Edaphiques Toulouse 6, 1–20.
Cassagnau, P., Dallai, R., and Deharveng, L. (1979). Polytene chromosomes polymorphism in Lathriopyga longiseta Caroli (Collembola Neanuridae). Caryologia 32, 461–483.
Chenon, P., Rousset, A., and Crouau, Y. (2000). Genetic polymorphism in nine clones of a parthenogenetic collembolan used in ecotoxicological testing. Applied Soil Ecology 14, 103–110.
| Genetic polymorphism in nine clones of a parthenogenetic collembolan used in ecotoxicological testing.Crossref | GoogleScholarGoogle Scholar |
Cicconardi, F., Nardi, F., Emerson, B. C., Frati, F., and Fanciulli, P. P. (2010). Deep phylogeographic divisions and long-term persistence of forest invertebrates (Hexapoda: Collembola) in the North-Western Mediterranean basin. Molecular Ecology 19, 386–400.
| Deep phylogeographic divisions and long-term persistence of forest invertebrates (Hexapoda: Collembola) in the North-Western Mediterranean basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlOntLc%3D&md5=1b3a8a76f62f1500e24a9776dd9275deCAS |
Crouau, Y., Cazes, L., and Bur, T. (2009). The use of the Collembola reproduction test in bioassays of polluted soils. In ‘Progress in Environmental Science and Technology. Vol II, Pts A and B’. (Eds S. C. Li, Y. J. Wang, F. X. Cao, P. Huang and Y. Zhang.) pp. 1843–1845. (Science Press Beijing: Beijing.)
D’Haese, C. A. (2002). Were the first springtails semi-aquatic? A phylogenetic approach by means of 28S rDNA and optimization alignment. Proceedings. Biological Sciences 269, 1143–1151.
| Were the first springtails semi-aquatic? A phylogenetic approach by means of 28S rDNA and optimization alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1aqt7w%3D&md5=c7513daf065cf5c812152f95dcb49a38CAS |
Deharveng, L. (2004). Recent advances in Collembola systematics. Pedobiologia 48, 415–433.
| Recent advances in Collembola systematics.Crossref | GoogleScholarGoogle Scholar |
Fanciulli, P. P., Frati, F., Dallai, R., and Rusek, J. (1991). High genetic divergence among populations of Tetrodontophora bielanensis (Insecta, Collembola) in Europe. Revue D Ecologie Et De Biologie Du Sol 28, 165–173.
Fanciulli, P. P., Melegari, D., Carapelli, A., Frati, F., and Dallai, R. (2000). Population structure, gene flow and evolutionary relationships in four species of the genera Tomocerus and Pogonognathellus (Collembola, Tomoceridae). Biological Journal of the Linnean Society. Linnean Society of London 70, 221–238.
Fanciulli, P. P., Carapelli, A., Belloni, M., Dallai, R., and Frati, F. (2009). Allozyme variation in the springtails Allacma fusca and A. gallica (Collembola, Sminthuridae). Pedobiologia 52, 309–324.
| Allozyme variation in the springtails Allacma fusca and A. gallica (Collembola, Sminthuridae).Crossref | GoogleScholarGoogle Scholar |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS |
Frati, F., Fanciulli, P. P., and Dallai, R. (1992). Genetic diversity and taxonomy in soil-dwelling insects – the genus Orchesella. The Journal of Heredity 83, 275–281.
Frati, F., Carapelli, A., Fanciulli, P. P., and Dallai, R. (1995). The genus Isotomurus: where molecular markers help to evaluate the importance of morphological characters for the diagnosis of species. Polskie Pismo Entomologiczne 64, 41–51.
Frati, F., Negri, I., Fanciulli, P. P., Pellecchia, M., De Paola, V., Scali, V., and Dallai, R. (2004). High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae). Pedobiologia 48, 461–468.
| High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1WmsLo%3D&md5=d31c9b1f81a12ce4ccafc4232fdd79adCAS |
Hajibabaei, M., DeWaard, J. R., Ivanova, N. V., Ratnasingham, S., Dooh, R. T., Kirk, S. L., Mackie, P. M., and Hebert, P. D. N. (2005). Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society B-Biological Sciences 360, 1959–1967.
| Critical factors for assembling a high volume of DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrbE&md5=c3225e33fb170df0244e088aa8791414CAS |
Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., and Hebert, P. D. N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103, 968–971.
| DNA barcodes distinguish species of tropical Lepidoptera.Crossref | GoogleScholarGoogle Scholar |
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=08d747d827542961412adcc224832fc5CAS |
Hammond, P. M. (1992). Species inventory. In ‘Global Biodiversity: Status of the Earth’s Living Resources. A Report Compiled by the World Conservation Monitoring Centre’. (Ed. B. Groombridge.) pp. 17–39. (Chapman & Hall: London.)
Hausmann, A., Hebert, P. D. N., Mitchell, A., Rougerie, R., Sommerer, M., Edwards, T., and Young, C. J. (2009). Revision of the Australian Oenochroma vinaria Guenee, 1858 species-complex (Lepidoptera: Geometridae, Oenochrominae): DNA barcoding reveals cryptic diversity and assesses status of type specimen without dissection. Zootaxa 2239, 1–21.
Hebert, P. D. N., Cywinska, A., Ball, S. L., and DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS |
Hogg, I. D., and Hebert, P. D. N. (2004). Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology-Revue Canadienne De Zoologie 82, 749–754.
| Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes.Crossref | GoogleScholarGoogle Scholar |
Hopkin, S. P. (1997). ‘Biology of the Springtails (Insecta: Collembola).’ (Oxford University Press: New York & Tokyo.)
Ivanova, N. V., Dewaard, J. R., and Hebert, P. D. N. (2006). An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6, 998–1002.
| An inexpensive, automation-friendly protocol for recovering high-quality DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsl2ksw%3D%3D&md5=61bcb820336b724ae357909d1bde24b1CAS |
James, S. W., Porco, D., Decaëns, T., Richard, B., Rougerie, R., and Erséus, C. (2010). DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826). PLoS ONE 5, e15629.
| DNA barcoding reveals cryptic diversity in Lumbricus terrestris L., 1758 (Clitellata): resurrection of L. herculeus (Savigny, 1826).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlSkug%3D%3D&md5=f48d743a697ac6063482ef591aff579bCAS |
Jordana, R., Schulz, H.-J., and Baquero, E. (2011a). New species of Entomobrya from Germany (Collembola, Entomobryini). Soil Organisms 83, 249–264.
Jordana, R., Giuga, L., and Baquero, E. (2011b). New species of Entomobrya from Etna mountain, Sicily (Collembola Entomobryomorpha). Redia-Giornale Di Zoologia 94, 35–38.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. Journal of Molecular Evolution 16, 111–120.
| A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=78555c3dc7e755aed13a5a2a8c5b8747CAS |
Kovac, L., and Papac, V. (2010). Revision of the genus Neelus Folsom, 1896 (Collembola, Neelida) with the description of two new troglobiotic species from Europe. Zootaxa 2663, 36–52.
Letunic, I., and Bork, P. (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics (Oxford, England) 23, 127–128.
| Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktLzN&md5=c346545c8b00fd40eafd9ef2fafb3e2fCAS |
Lukic, M., Houssin, C., and Deharveng, L. (2010). A new relictual and highly troglomorphic species of Tomoceridae (Collembola) from a deep Croatian cave. ZooKeys 69, 1–16.
Lupetti, P., Marsili, L., Focardi, S., and Dallai, R. (1994). Organochlorine compounds in litter-dwelling arthropods: Collembola (Insecta Apterygota) from central Italy. Acta Zoologica Fennica 195, 94–97.
McGaughran, A., Torricelli, G., Carapelli, A., Frati, F., Stevens, M. I., Convey, P., and Hogg, I. D. (2010). Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. Journal of Biogeography 37, 103–119.
| Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica.Crossref | GoogleScholarGoogle Scholar |
Palacios-Vargas, J. G., and Arbea, J. I. (2009). Neotropical species of Proisotoma (Collembola: Isotomidae), with description of two new cave species from America. Revista Mexicana De Biodiversidad 80, 445–453.
Palacios-Vargas, J. G., Deharveng, L., and D’Haese, C. A. (2011). The genus Pronura (Collembola: Neanuridae) in South America, with descriptions of two new species and a barcode sequence for one of them. Revue Suisse de Zoologie 118, 197–205.
Porco, D., Bedos, A., and Deharveng, L. (2010a). Description and DNA barcoding assessment of the new species Deutonura gibbosa (Collembola: Neanuridae: Neanurinae), a common springtail of Alps and Jura. Zootaxa 2639, 59–68.
Porco, D., Rougerie, R., Deharveng, L., and Hebert, P. (2010b). Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied arthropods in a high-throughput context: the example of Collembola. Molecular Ecology Resources 10, 942–945.
| Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied arthropods in a high-throughput context: the example of Collembola.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGmtrjP&md5=b3ebfab201623305abac19a2e865b6d7CAS |
Porco, D., Potapov, M., Bedos, A., Busmachiu, G., Weiner, W. M., Hamra-Kroua, S., and Deharveng, L. (2012a). Cryptic diversity in the ubiquist species Parisotoma notabilis (Collembola, Isotomidae): a long used chimeric species? PLoS ONE 7, e46056.
| 1:CAS:528:DC%2BC38XhsVOlsr%2FP&md5=3c6627d89a3442e93834cef9df257126CAS |
Porco, D., Decaëns, T., Deharveng, L., James, S., Skarżyński, D., Erséus, C., Butt, K., Richard, B., and Hebert, P. N. (2012b). Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America. Biological Invasions , .
| Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America.Crossref | GoogleScholarGoogle Scholar |
Potapov, M. (2001). Synopses on Palaearctic Collembola. Volume 3. Isotomidae. Abhandlungen und Berichte des Naturkundemuseums Goerlitz 73, 1–603.
Riepert, F., and Kula, C. (1996). Development of laboratory methods for testing effects of chemicals and pesticides on Collembola and earthworms. In ‘Communications from the Federal Biological Institute for Agriculture and Forestry’. (Ed. Berlin-Dahlem.) pp. 82.
Rocha-Ramírez, A., Ramirez-Rojas, A., Chavez-Lopez, R., and Alcocer, J. (2007). Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal System, Veracruz, Mexico. Aquatic Ecology 41, 319–333.
| Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal System, Veracruz, Mexico.Crossref | GoogleScholarGoogle Scholar |
Rost, M. M. (2006). Ultrastructural changes in the midgut epithelium in Podura aquatica L. (Insecta, Collembola, Arthropleona) during regeneration. Arthropod Structure & Development 35, 69–76.
| Ultrastructural changes in the midgut epithelium in Podura aquatica L. (Insecta, Collembola, Arthropleona) during regeneration.Crossref | GoogleScholarGoogle Scholar |
Rougerie, R., Decaens, T., Deharveng, L., Porco, D., James, S. W., Chang, C. H., Richard, B., Potapov, M., Suhardjono, Y., and Hebert, P. D. N. (2009). DNA barcodes for soil animal taxonomy. Pesquisa Agropecuaria Brasileira 44, 789–802.
| DNA barcodes for soil animal taxonomy.Crossref | GoogleScholarGoogle Scholar |
Saitou, N., and Nei, M. (1987). The neighbor-joining method – a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=9007f6a38c575e135323ec5b129ae4d3CAS |
Salmon, S. (2001). Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Biology and Fertility of Soils 34, 304–310.
| Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFOltb8%3D&md5=fc0deaa2cf5bf5d34fd59996db7f15fbCAS |
Soto-Adames, F. N. (2002). Molecular phylogeny of the Puerto Rican Lepidocyrtus and Pseudosinella (Hexapoda: Collembola), a validation of Yoshii’s “color pattern species”. Molecular Phylogenetics and Evolution 25, 27–42.
| Molecular phylogeny of the Puerto Rican Lepidocyrtus and Pseudosinella (Hexapoda: Collembola), a validation of Yoshii’s “color pattern species”.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVeqs74%3D&md5=2ebb78778d61a3aa7d0a8c947ccb39f9CAS |
Stevens, M. I., and Hogg, I. D. (2006). Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biology & Biochemistry 38, 3171–3180.
| Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFens7s%3D&md5=d67678824613ee96eec1295dc239a198CAS |
Stevens, M. I., Greenslade, P., Hogg, I. D., and Sunnucks, P. (2006). Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Molecular Biology and Evolution 23, 874–882.
| Southern Hemisphere springtails: could any have survived glaciation of Antarctica?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVeqtLg%3D&md5=e8d7cae2d8f2032d6b654c6f12c88ee5CAS |
Stevens, M. I., Porco, D., D’Haese, C. A., and Deharveng, L. (2011). Comment on “Taxonomy and the DNA Barcoding Enterprise” by Ebach (2011). Zootaxa 2839, 85–88.
Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
| MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=d2738b052fcd210827e9d4fc638cc7d5CAS |
Torricelli, G., Carapelli, A., Convey, P., Nardi, F., Boore, J. L., and Frati, F. (2010). High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene (Amsterdam) 449, 30–40.
| High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleku7jK&md5=fae2222c7dd1daf8329ba6eabeb17dfbCAS |
Tully, T., D’Haese, C. A., Richard, M., and Ferriere, R. (2006). Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida. Pedobiologia 50, 95–104.
| Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlWhtLk%3D&md5=fdff06273fbacc874ca8d9d8c81a3d70CAS |