Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematics and biology of the iconic Australian scribbly gum moths Ogmograptis Meyrick (Lepidoptera : Bucculatricidae) and their unique insect–plant interaction

M. Horak A D , M. F. Day A , C. Barlow B , E. D. Edwards A , Y. N. Su A and S. L. Cameron C
+ Author Affiliations
- Author Affiliations

A CSIRO Ecosystem Sciences, Canberra, ACT 2601, Australia.

B CSIRO Plant Industry, Canberra, ACT 2601, Australia.

C School of Earth, Environment & Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld 4001, Australia.

D Corresponding author. Email: Marianne.Horak@csiro.au

Invertebrate Systematics 26(4) 357-398 https://doi.org/10.1071/IS12022
Submitted: 6 April 2012  Accepted: 31 July 2012   Published: 27 November 2012

Abstract

Many smooth-barked Eucalyptus spp.in south-eastern Australia bear distinctive scribbles caused by the larva of some Ogmograptis spp. However, although these scribbles are conspicuous, the systematics and biology of the genus is poorly known. This has been addressed through detailed field and laboratory studies of the biology of three species (O. racemosa Horak, sp. nov., O. fraxinoides Horak, sp. nov., O. scribula Meyrick) in conjunction with a comprehensive taxonomic revision supported by a molecular phylogeny utilising the mitochondrial Cox1 and nuclear 18S genes. In brief, eggs are laid in bark depressions and the first-instar larvae bore into the bark to the level where the future cork cambium forms (the phellogen). Early-instar larvae bore wide, arcing tracks in this layer before forming a tighter zig-zag-shaped pattern. The second-last instar turns and bores either closely parallel to the initial mine or doubles its width, along the zig-zag-shaped mine. The final instar possesses legs and a spinneret (unlike the earlier instars) and feeds exclusively on callus tissue that forms within the zig-zag-shaped mine formed by the previous instar, before emerging from the bark to pupate at the base of the tree. The scars of mines then become visible scribbles following the shedding of the outer bark. Sequence data confirm the placement of Ogmograptis within the Bucculatricidae, suggest that the larvae responsible for the ‘ghost scribbles’ (raised scars found on smooth-barked eucalypts) are members of the related genus Tritymba Meyrick, and support the morphology-based species groups proposed for Ogmograptis. The formerly monotypic genus Ogmograptis Meyrick is revised and divided into three species groups. Eleven new species are described: Ogmograptis fraxinoides Horak, sp. nov., Ogmograptis racemosa Horak, sp. nov., and Ogmograptis pilularis Horak, sp. nov., forming the scribula group with Ogmograptis scribula Meyrick; Ogmograptis maxdayi Horak, sp. nov., Ogmograptis barloworum Horak, sp. nov., Ogmograptis paucidentatus Horak, sp. nov., Ogmograptis rodens Horak, sp. nov., Ogmograptis bignathifer Horak, sp. nov., and Ogmograptis inornatus Horak, sp. nov., as the maxdayi group; Ogmograptis bipunctatus Horak, sp. nov., Ogmograptis pulcher Horak, sp. nov., Ogmograptis triradiata (Turner), comb. nov., and Ogmograptis centrospila (Turner), comb. nov., as the triradiata group. Ogmograptis notosema (Meyrick) cannot be assigned to a species group as the holotype has not been located. Three unique synapomorphies, all derived from immatures, redefine the family Bucculatricidae, uniting Ogmograptis, Tritymba (both Australian) and Leucoedemia Scoble & Scholtz (African) with Bucculatrix Zeller, which is the sister group of the Southern Hemisphere genera. The systematic history of Ogmograptis and the Bucculatricidae is discussed.

Additional keywords: callus, Eucalyptus, Leucoedemia, mine, phellogen, phylogeny, Tritymba.


References

Braun, A. F. (1963). The genus Bucculatrix in America north of Mexico (Microlepidoptera). Memoir of the American Entomological Society 18(i–iii), 1–208, pls I–XLV.

Brooker, M. I. H. (2000). A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
A new classification of the genus Eucalyptus L’Hér. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Brooker, M. I. H., Slee, A. V., Connors, J. R., and Duffy, S. M. (2002). ‘EUCLID: Eucalypts of Southern Australia.’ (CD ROM) 2nd edn. (CSIRO Publishing: Melbourne.)

Cameron, S. L., Sullivan, J., Song, H., Miller, K. B., and Whiting, M. F. (2009). A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zoologica Scripta 38, 575–590.
A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders.Crossref | GoogleScholarGoogle Scholar |

Common, I. F. B. (1990). ‘Moths of Australia.’ (Melbourne University Press: Melbourne.)

Cooke, J., and Edwards, T. (2007). The behaviour of scribbly gum moth larvae Ogmograptis sp. Meyrick (Lepidoptera: Bucculatricidae) in the Australian Capital Territory. Australian Journal of Entomology 46, 269–275.
The behaviour of scribbly gum moth larvae Ogmograptis sp. Meyrick (Lepidoptera: Bucculatricidae) in the Australian Capital Territory.Crossref | GoogleScholarGoogle Scholar |

Davis, D. R. (1989). Generic revision of the Opostegidae, with a synoptic catalog of the world’s species (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology 478, 1–97.
Generic revision of the Opostegidae, with a synoptic catalog of the world’s species (Lepidoptera: Nepticuloidea).Crossref | GoogleScholarGoogle Scholar |

Davis, D. R., and Stonis, J. R. (2007). A revision of the New World plant-mining moths of the family Opostegidae (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology 625, 1–212.
A revision of the New World plant-mining moths of the family Opostegidae (Lepidoptera: Nepticuloidea).Crossref | GoogleScholarGoogle Scholar |

Davis, D. R., Landry, B., and Roque-Albelo, L. (2002). Two new Neotropical species of Bucculatrix leaf miners (Lepidoptera: Bucculatricidae) reared from Cordia (Boraginaceae). Revue Suisse de Zoologie 109, 277–294.

Dowton, M., Cameron, S. L., Austin, A. D., and Whiting, M. F. (2009). Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera – a lineage with both rapidly and slowly evolving mitochondrial genomes. Molecular Phylogenetics and Evolution 52, 512–519.
Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera – a lineage with both rapidly and slowly evolving mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12htr4%3D&md5=cacdf78ceb2c6ecdcabf5785c5e55675CAS |

Dugdale, J. S. (1988). Lepidoptera – annotated catalogue, and keys to family group taxa. Fauna of New Zealand 14, 1–262.

Edwards, E. D. (1996). Plutellidae. In ‘Checklist of the Lepidoptera of Australia. Vol. 4. Monographs on Australian Lepidoptera’. (Eds E. S. Nielsen, E. D. Edwards and T. V. Rangsi.) p. 53. (CSIRO Publishing: Melbourne.)

Flannery, T. (2010). Here on Earth. ‘An Argument for Hope’. (The Text Publishing Company: Melbourne.)

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS |

Gandolfo, M. A., Hermsen, E. J., Zamaloa, M. C., Nixon, K. C., González, C. C., Wilf, P., Cúneo, N. R., and Johnson, K. R. (2011). Oldest known Eucalyptus macrofossils are from South America. PLoS ONE 6, e21084.
Oldest known Eucalyptus macrofossils are from South America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1yqtLg%3D&md5=d39eaaa2ffe626d4afcde079c56e0686CAS |

Gentry, A. H. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic functions, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69, 557–593.
Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic functions, or an accident of the Andean orogeny?Crossref | GoogleScholarGoogle Scholar |

Gibbs, M. (1918). ‘Snugglepot and Cuddlepie, their Adventures Wonderful.’ (Angus & Robertson: Sydney.)

Grossenbacher, J. G. (1910). Medullary spots: a contribution to the life history of some cambium miners. New York Agricultural Experiment Station Technical Bulletin 15, 49–65.

Hering, M. (1951). ‘Biology of the Leaf Miners.’ (Dr W. Junk: The Hague, Netherlands.)

Huelsenbeck, J. P., and Ronquist, F. R. (2001). MrBayes: Bayesian inference of phylogeny. Biometrics 17, 754–755.
| 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=89aaec60163cef8dac4fe0ecf046c64cCAS |

Kumata, T. (1984). Cambium miners making pith flecks in broad-leaved trees – a review of cambium miners (in Japan). Hoppô Ringyô 36, 6–15.

Ladiges, P. Y., Udovicic, F., and Nelson, G. (2003). Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Ladiges, P. Y., Bayly, M. J., and Nelson, G. J. (2010). East–west continental vicariance in Eucalyptus subgenus Eucalyptus. In ‘Beyond Cladistics. The Branching of a Paradigm’. (Eds D. M. Williams and S. Knapp.) pp. 267–302. (University of California Press: Berkeley and Los Angeles.)

Mackay, M. R. (1972). Larval sketches of some microlepidoptera, chiefly North American. Memoirs of the Entomological Society of Canada 88, 5–83.

Maddison, W., and Maddison, D. (2003). ‘MacClade ver. 4.06.’ (Sinauer Associates: Sunderland, MA.)

Meyrick, E. (1921). Descriptions of South African Micro-Lepidoptera. Annals of the Transvaal Museum 8, 49–148.

Meyrick, E. (1922). ‘Exotic Microlepidoptera 2.’ pp. 481–512. (Taylor and Francis: London.)

Meyrick, E. (1935). ‘Exotic Microlepidoptera 4.’ pp. 593–608. (Taylor and Francis: London.)

Moore, K. M. (1972). Observations on some Australian forest insects. Australian Zoologist 17, 30–39.

Mosher, E. (1969). ‘Lepidoptera Pupae. Five Collected Works on the Pupae of North American Lepidoptera’. (Entomological Reprint Specialists: East Lansing, MI.)

Mutanen, M., Wahlberg, N., and Kaila, L. (2010). Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society Biological Sciences Series B 277, 2839–2848.
Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies.Crossref | GoogleScholarGoogle Scholar |

Nielsen, E. S. (1996a). Lyonetiidae. In ‘Checklist of the Lepidoptera of Australia. Vol. 4. Monographs on Australian Lepidoptera’. (Eds E. S. Nielsen, E. D. Edwards and T. V. Rangsi.) pp. 57–58. (CSIRO Publishing: Melbourne.)

Nielsen, E. S. (1996b). Bucculatricidae. In ‘Checklist of the Lepidoptera of Australia. Vol. 4. Monographs on Australian Lepidoptera’. (Eds E. S. Nielsen, E. D. Edwards and T. V. Rangsi.) p. 45. (CSIRO Publishing: Melbourne.)

Nielsen, E. S., and Common, I. F. B. (1991). Lepidoptera (Moths and Butterflies). In ‘The Insects of Australia. Vol. 2’. (Ed. CSIRO.) pp. 817–915. (Melbourne University Press: Melbourne.)

Pfeil, B. E., and Henwood, M. J. (2004). Multivariate analysis of morphological variation in Eucalyptus series Psathyroxyla Blakely (Myrtaceae): taxonomic implications. Telopea 10, 711–724.

Posada, D., and Crandall, K. A. (1998). ModelTest: testing the best-fit model of nucleotide substitution. Bioinformatics (Oxford, England) 14, 817–818.
ModelTest: testing the best-fit model of nucleotide substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=96deade1c75c4e555f1a98ea1a9c9435CAS |

Puplesis, R., Seksjaeva, S., and Puplesiene, J. (1992). Bucculatrix formosa sp. n., a remarkable species from the Kugitangtau Mountains (Central Asia) (Lepidoptera: Bucculatricidae). Nota lepidopterologica 15, 41–46.

Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer

Robinson, G. S. (1976). The preparation of slides of Lepidoptera genitalia with special reference to the Microlepidoptera. Entomologist’s Gazette 27, 127–132.

Scoble, M. J., and Scholtz, C. H. (1984). A new, gall-feeding moth (Lyonetiidae: Bucculatricinae) from South Africa with comments on larval habits and phylogenetic relationships. Systematic Entomology 9, 83–94.
A new, gall-feeding moth (Lyonetiidae: Bucculatricinae) from South Africa with comments on larval habits and phylogenetic relationships.Crossref | GoogleScholarGoogle Scholar |

Seksjaeva, S. V. (1995). New intrageneric groups within the genus Bucculatrix (Lepidoptera, Bucculatricidae) designated on the basis of the morphology of the male genitalia. Entomological Review 74, 111–119.

Swofford, D. L. (2002). ‘PAUP* Phylogenetic Analysis using Parsimony (*and Other Methods) Ver. 4.’ (Sinauer Associates: Sunderland, MA.)

Turner, A. J. (1923). New Australian Micro-Lepidoptera. Transactions of the Royal Society of South Australia 47, 165–194.

Turner, A. J. (1926). Studies in Australian Lepidoptera. Transactions of the Royal Society of South Australia 50, 120–155.

Upton, M. S. (1997). ‘A Rich and Diverse Fauna. The History of the Australian National Insect Collection 1926–1991’. (CSIRO Publishing: Melbourne.)

Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31, 93–104.
Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera.Crossref | GoogleScholarGoogle Scholar |

Whitten, M. (2012). Deciphering nature’s message stick. Meanjin 71, 30–38.

Wright, J. (1955). Scribbly-Gum. In ‘The Two Fires’. (Angus and Robertson: Sydney.)

Zborowski, P., and Edwards, T. (2007). ‘A Guide to Australian Moths.’ (CSIRO Publishing: Melbourne.)