Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A morphometric approach supporting genetic results in the taxonomy of the New Zealand limpets of the Cellana strigilis complex (Mollusca : Patellogastropoda : Nacellidae)

Céline M. O. Reisser A B D , Bruce A. Marshall C D and Jonathan P. A. Gardner A
+ Author Affiliations
- Author Affiliations

A Centre for Marine Environmental and Economic Research, School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.

B Current address: Department of Biology, Unit of Ecology and Evolution, University of Fribourg, Fribourg, Switzerland.

C Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand.

D Corresponding authors. Email: celine.reisser@gmail.com; bruce.marshall@tepapa.govt.nz

Invertebrate Systematics 26(2) 193-203 https://doi.org/10.1071/IS11042
Submitted: 23 October 2011  Accepted: 6 February 2012   Published: 6 August 2012

Abstract

The New Zealand Cellana strigilis complex has been traditionally divided into six subspecies. Recent molecular investigations, however, revealed that the complex comprises two clades. In this paper, an additional morphometric analysis on 160 shells from the two clades confirms the need for taxonomic reconsideration of the C. strigilis complex. Here, two species are recognised in the Cellana strigilis group, a western species, C. strigilis (Hombron & Jacquinot, 1841), from South, Stewart, Snares, Auckland and Campbell islands, with Patella redimiculum Reeve, 1854 and C. strigilis flemingi Powell, 1955 as synonyms; and an eastern species, C. oliveri Powell, 1955, from Chatham, Bounty Islands and Antipodes Islands, with C. strigilis bollonsi Powell, 1955 and C. chathamensis of authors (not Pilsbry, 1891) as synonyms. Acmaea chathamensis Pilsbry, 1891 is based on mislocalised foreign shells, probably C. rota (Gmelin, 1791) from the Red Sea. A neotype is designated for P. strigilis Hombron & Jacquinot, 1841, lectotypes are designated for P. redimiculum Reeve, 1854 and A. chathamensis Pilsbry, 1891, and a type locality is selected for P. redimiculum.


References

Adams, H. (1869). Descriptions of a new genus and fourteen new species of marine shells. Proceedings of the Zoological Society of London 1869, 272–275.

Anderson, M. J. (2004). ‘Cap: a Fortran Computer Program for Canonical Analysis of Principal Coordinates.’ (Department of Statistics, University of Auckland: New Zealand.)

Anderson, M. J., and Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525.
Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology.Crossref | GoogleScholarGoogle Scholar |

Beaumont, A. R., Seed, R., and Garcia-Martinez, P. (1989). Electrophoretic and morphometric criteria for the identification of the mussels Mytilus edulis and M. galloprovincialis. In ‘Proceedings of the 23rd European Marine Biology Symposium’. (Eds J. S. Ryland and P. A. Tyler.) pp. 251–258. (Olsen and Olsen: Fredensborg, Denmark.)

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Branch, G. M. (1985a). Limpets: evolution and adaptation. In ‘The Mollusca.’ Vol. 10. (Eds E. R. Trueman, and M. R. Clarke.) pp. 187–220. (Academic Press: New York.)

Branch, G. M. (1985b). Limpets: their role in littoral and sublittoral community dynamics. In ‘The Ecology of Rocky Coasts’. (Eds P. G. Moore, and R. Seed.) pp. 97–116. (Hodder and Stoughton: London.)

Carlton, J. T., Vermeij, G. J., Lindberg, D. R., Carlton, D. A., and Dudley, E. C. (1991). The first historical extinction of a marine invertebrate in an ocean basin: the demise of the eelgrass limpet Lottia alveus. The Biological Bulletin 180, 72–80.
The first historical extinction of a marine invertebrate in an ocean basin: the demise of the eelgrass limpet Lottia alveus.Crossref | GoogleScholarGoogle Scholar |

Christiaens, J. (1986). Notes sur quelques Patellidae (Gastropoda) de l’Ocean Indien. Apex. Informations Scientifiques de la Société Belge de Malacologie 1, 97–128.

Christiaens, J. (1987). Revision of the limpets of the Red Sea. Patellidae, Fissurellidae and the genus Hemitoma. Gloria Maris 26, 17–54.

Cooley, J. W., and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier Series. Mathematics of Computation 19, 297–303.
An algorithm for the machine calculation of complex Fourier Series.Crossref | GoogleScholarGoogle Scholar |

Costa, C., Aguzzi, J., Menesatti, P., Antonucci, F., Rimatori, V., and Mattoccia, M. (2008). Shape analysis of different populations of clams in relation to their geographical structure. Journal of Zoology 276, 71–80.
Shape analysis of different populations of clams in relation to their geographical structure.Crossref | GoogleScholarGoogle Scholar |

Crampton, J.S., and Haines, A.J. (1996). Users’ manual for programs HANGLE, HMATCH and HCURVE for the Fourier Shape analysis of two-dimensional outlines. New Zealand Institute of Geological and Nuclear Sciences Science Report 96 37, 1–28.

Dall, W. H. (1871). On the limpets; with special reference to the species of the west coast of America, and to a more natural classification of the group. American Journal of Conchology 6, 227–282.

De Aranzamendi, M. C., Martinez, J. J., and Sahade, R. (2010). Shape differentiation and characterization in the two morphotypes of the Antarctic limpet Nacella concinna using Elliptical Fourier analysis of shells. Polar Biology 33, 1163–1170.
Shape differentiation and characterization in the two morphotypes of the Antarctic limpet Nacella concinna using Elliptical Fourier analysis of shells.Crossref | GoogleScholarGoogle Scholar |

Demes, K. W., Graham, M. H., and Suskiewicz, T. S. (2009). Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: the giant kelp Macrosystis (Laminariales, Phaeophyceae), is a monospecific genus. Journal of Phycology 45, 1266–1269.
Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: the giant kelp Macrosystis (Laminariales, Phaeophyceae), is a monospecific genus.Crossref | GoogleScholarGoogle Scholar |

Ferson, S., Rohlf, F. J., and Koehn, R. K. (1985). Measuring shape variation of two-dimensional outlines. Systematic Zoology 34, 59–68.
Measuring shape variation of two-dimensional outlines.Crossref | GoogleScholarGoogle Scholar |

Filhol, H. (1885). Mollusques. In ‘Recueil de Mémoires, Rapports et Documents Relatifs a l’Observation du Passage de Vénus sur le Soleil 3(2)9. pp. 517–571. (Gauthier-Villars: Paris.)

Finlay, H. J. (1927). A further commentary on New Zealand molluscan systematics. Transactions of the New Zealand Institute 57, 320–485.

Finlay, H. J. (1928). The Recent Mollusca of the Chatham Islands. Transactions of the New Zealand Institute 59, 232–286.

Gardner, J. P. A. (1995). Developmental stability is not disrupted by extensive hybridization and introgression among populations of the marine bivalve molluscs Mytilus edulis (L.) and M. galloprovincialis (Lmk.) from south-west England. Biological Journal of the Linnean Society. Linnean Society of London 54, 71–86.
Developmental stability is not disrupted by extensive hybridization and introgression among populations of the marine bivalve molluscs Mytilus edulis (L.) and M. galloprovincialis (Lmk.) from south-west England.Crossref | GoogleScholarGoogle Scholar |

Gardner, J. P. A. (1996). The Mytilus edulis species complex in southwest England: effects of hybridization and introgression upon interlocus associations and morphometric variation. Marine Biology 125, 385–399.
The Mytilus edulis species complex in southwest England: effects of hybridization and introgression upon interlocus associations and morphometric variation.Crossref | GoogleScholarGoogle Scholar |

Gardner, J. P. A. (2004). A historical perspective of the genus Mytilus (Bivalvia: Mollusca) in New Zealand: multi-variate morphometric analyses of fossil, midden and contemporary blue mussels. Biological Journal of the Linnean Society. Linnean Society of London 82, 329–344.
A historical perspective of the genus Mytilus (Bivalvia: Mollusca) in New Zealand: multi-variate morphometric analyses of fossil, midden and contemporary blue mussels.Crossref | GoogleScholarGoogle Scholar |

Gardner, J. P. A., and Thompson, R. J. (2009). Influence of genotype and geography on shell shape and morphometric trait variation among North Atlantic blue mussels (Mytilus spp.) populations. Biological Journal of the Linnean Society. Linnean Society of London 96, 875–897.
Influence of genotype and geography on shell shape and morphometric trait variation among North Atlantic blue mussels (Mytilus spp.) populations.Crossref | GoogleScholarGoogle Scholar |

Goldstien, S. J., Gemmell, N. J., and Schiel, D. R. (2009). Colonisation and connectivity by intertidal limpets among New Zealand, Chatham and Sub-Antarctic Islands. I. Genetic connections. Marine Ecology Progress Series 388, 111–119.
Colonisation and connectivity by intertidal limpets among New Zealand, Chatham and Sub-Antarctic Islands. I. Genetic connections.Crossref | GoogleScholarGoogle Scholar |

González-Wevar, C. A., Nakano, T., Cañete, J. I., and Poulin, E. (2011). Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic province. Molecular Ecology 20, 1936–1951.
Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic province.Crossref | GoogleScholarGoogle Scholar |

Gould, A. A. (1846). Shells collected by the United States Exploring Expedition under the command of Charles Wilkes. Proceedings of the Boston Society of Natural History 2, 148–152.

Gould, A.A. (1852). Mollusca and shells. In ‘United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842. Under the command of Charles Wilkes, U.S.N. 12’. (Gould & Lincoln: Boston.)

Haines, J. A., and Crampton, J. S. (2000). Improvements to the method of Fourier analysis as applied in morphometric studies. Palaeontology 43, 765–783.
Improvements to the method of Fourier analysis as applied in morphometric studies.Crossref | GoogleScholarGoogle Scholar |

Hoffman, J. I., Peck, L. S., Hilliard, G., Zieritz, A., and Clark, M. S. (2010). No evidence for genetic variation between Antarctic limpet Nacella concinna morphotypes. Marine Biology 157, 765–778.
No evidence for genetic variation between Antarctic limpet Nacella concinna morphotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlanurc%3D&md5=06e12e30c7478f09a27d410ebc473502CAS |

Hombron, J. B., and Jacquinot, C. H. (1841). Suite de la description de quelques mollusques, provenant de la campagne de l’Astrolabe et de la Zélée. Annales des Sciences Naturelles 2. Zoologie 16, 190–192.

Hutton, F. W. (1873). ‘Catalogue of the Marine Mollusca of New Zealand, with Diagnoses of the Species.’ (Didsbury, Government Printer: Wellington.)

Hutton, F. W. (1878). Révision des coquilles de la Nouvelle-Zélande et des Îles Chatham. Journal de Conchyliologie 26, 5–57.

Hutton, F. W. (1880). ‘Manual of the New Zealand Mollusca. A Systematic and Descriptive Catalogue of the Marine and Land Shells, and of the Soft Mollusks and Polyzoa of New Zealand and the Adjacent Islands.’ (Hughes, Government Printer: Wellington.)

Hutton, F. W. (1884). Revision of the Recent rhipidoglossate and docoglossate Mollusca of New Zealand. Proceedings of the Linnean Society of New South Wales 9, 354–378.

Iredale, T. (1915). A commentary on Suter’s “Manual of the New Zealand Mollusca”. Transactions of the New Zealand Institute 47, 417–497.

Kass, D. A., Traill, T. A., Keating, M., Altieri, P. I., and Maughan, W. L. (1987). Abnormalities of dynamic ventricular shape change in patients with aortic and mitral valvular regulation: assessment by Fourier shape analysis and global geometric indexes. Circulation Research 62, 127–138.
| 1:STN:280:DyaL2s3msVGqtQ%3D%3D&md5=ddbfeb4c7c054871d5fbff14f5167fceCAS |

Kirkendale, L. A., and Meyer, C. P. (2004). Phylogeography of the Patelloida profunda group (Gastropoda: Lottiidae): diversification in a dispersal-driven marine system. Molecular Ecology 13, 2749–2762.
Phylogeography of the Patelloida profunda group (Gastropoda: Lottiidae): diversification in a dispersal-driven marine system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlemurg%3D&md5=faa656c4ac554d14bfd9431f36d136f0CAS |

Krapivka, S., Toro, J. E., Alcapán, A. C., Astorga, M., Presa, P., Pérez, M., and Guiñez, R. (2007). Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupe 1854). Aquaculture and Research 38, 1770–1777.
Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupe 1854).Crossref | GoogleScholarGoogle Scholar |

Lindberg, D. R. (1979). Variations in the limpet, Collisella ochracea, and the northeastern Pacific distribution of Notoacmea testudinalis (Acmaeidae). The Nautilus 93, 50–56.

Lindberg, D. R. (1988). Systematics of the Scurriini (new tribe) of the northern Pacific Ocean (Patellogastropoda: Lottiidae). The Veliger 30, 387–394.

Lindberg, D. R. (1990). Systematics of Potamacmaea fluviatilis (Blanford): a brackish water patellogastropod (Patelloidinae: Lottiidae). The Journal of Molluscan Studies 56, 309–316.
Systematics of Potamacmaea fluviatilis (Blanford): a brackish water patellogastropod (Patelloidinae: Lottiidae).Crossref | GoogleScholarGoogle Scholar |

Lindberg, D. R. (2008). Patellogastropoda, Neritimorpha, and Cocculinoidea, the low-diversity gastropod clades. In ‘Phylogeny and Evolution of the Mollusca’. (Eds W. F. Ponder, and D. R. Lindberg.) pp. 271–296. (University of California Press: Berkeley, CA.)

Lindberg, D. R., and Hickman, C. S. (1986). A new anomalous giant limpet from the Oregon Eocene (Mollusca: Patellidae). Journal of Paleontology 60, 661–668.

Lindberg, D. R., and Vermeij, G. J. (1985). Patelloida chamorrorum spec. nov.: a new member of the Tethyan Patelloida profunda group (Gastropoda: Acmaeidae). The Veliger 27, 411–417.

Marshall, B. A. (1985). Recent and Tertiary deep-sea limpets of the genus Pectinodonta Dall (Mollusca: Gastropoda) from New Zealand and New South Wales. New Zealand Journal of Zoology 12, 273–282.
Recent and Tertiary deep-sea limpets of the genus Pectinodonta Dall (Mollusca: Gastropoda) from New Zealand and New South Wales.Crossref | GoogleScholarGoogle Scholar |

McDonald, J. H., Seed, R., and Koehn, R. K. (1991). Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Marine Biology 111, 323–333.
Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres.Crossref | GoogleScholarGoogle Scholar |

Nakano, T., and Sasaki, T. (2011). Recent advances in molecular phylogeny, systematics and evolution of patellogastropod limpets. Journal of Molluscan Research 77, 203–217.
Recent advances in molecular phylogeny, systematics and evolution of patellogastropod limpets.Crossref | GoogleScholarGoogle Scholar |

Nakano, T., and Spencer, H. G. (2007). Simultaneous polyphenism and cryptic species in an intertidal limpet from New Zealand. Molecular Phylogenetics and Evolution 45, 470–479.
Simultaneous polyphenism and cryptic species in an intertidal limpet from New Zealand.Crossref | GoogleScholarGoogle Scholar |

Odhner, N. H. (1924). New Zealand Mollusca. Papers from Dr. Th. Mortensen’s Pacific Expedition 1914–16. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening; Kjobenhavn 77, 1–90.

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar |

Pilsbry, H. A. (1891–1892). Acmaeidae, Lepetidae, Patellidae, Titiscaniidae. In ‘Manual of Conchology; Structural and Systematic, with Illustrations of the Species’. Vol. 13. (Academy of Natural Sciences: Philadelphia.)

Powell, A. W. B. (1933). The marine Mollusca of the Chatham Islands. Records of the Auckland Institute and Museum 1, 181–208.

Powell, A. W. B. (1937). ‘The Shellfish of New Zealand: an Illustrated Handbook.’ (Unity Press: Auckland.)

Powell, A. W. B. (1946). ‘The Shellfish of New Zealand: an Illustrated Handbook.’ 2nd edn. (Whitcombe and Tombs: Christchurch.)

Powell, A. W. B. (1955). Mollusca of the southern islands of New Zealand. Cape Expedition Series Bulletin No. 15. Department of Scientific and Industrial Research, Wellington.

Powell, A. W. B. (1957). ‘Shells of New Zealand: an Illustrated Handbook.’ 3rd edn. (Whitcombe and Tombs: Christchurch.)

Powell, A. W. B. (1962). ‘Shells of New Zealand: an Illustrated Handbook.’ 4th edn. (Whitcombe and Tombs: Christchurch.)

Powell, A. W. B. (1973). The patellid limpets of the world (Patellidae). Indo-Pacific Mollusca 3, 75–205.

Powell, A. W. B. (1976). ‘Shells of New Zealand: an Illustrated Handbook.’ 5th, rev. edn. (Whitcoulls: Christchurch.)

Powell, A. W. B. (1979). ‘New Zealand Mollusca – Marine, Land and Freshwater Shells.’ (Collins: Auckland.)

Preston, S. J., Harrison, A., Lundy, M., Roberts, D., Beddoe, N., and Rogowski, D. (2010). Square pegs in round holes – the implications of shell shape variation on the translocation of adult Margaritifera margaritifera (L.). Aquatic Conservation: Marine and Freshwater Ecosystems 20, 568–573.
Square pegs in round holes – the implications of shell shape variation on the translocation of adult Margaritifera margaritifera (L.).Crossref | GoogleScholarGoogle Scholar |

Rasband, W. S. (2008). ‘ImageJ.’ US National Institutes of Health, Bethesda, MA. Available at: http://rsb.info.nih.gov/ij/

Reeve, L. (1854–1855). Monograph of the genus Patella. Conchologia iconica; or, illustrations of the shells of molluscous animals. 8. (Reeve: London.)

Reisser, C. M. O., Wood, A. R., Bell, J. J., and Gardner, J. P. A. (2011). Connectivity, small islands and large distances: the Cellana strigilis limpet complex in the Southern Ocean. Molecular Ecology 20, 3399–3413.
Connectivity, small islands and large distances: the Cellana strigilis limpet complex in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Sasaki, T. (2000). Patellogastropoda. In ‘Marine Mollusks in Japan’. (Ed. T. Okutani.) pp. 24–33. (Tokai University Press: Japan.)

Sasaki, T., and Okutani, T. (1993). Anatomy and systematic position of Yayioacmea, a new genus for Japanese tiny limpet ‘Collisellaoyamai Habe, 1955 (Gastropoda: Lottiidae). Venus (Fukuyama-Shi, Japan) 52, 193–209.

Sasaki, T., Okutani, T., and Fujikura, K. (2003). New taxa and new records of patelliform gastropods associated with chemoautosynthesis-based communities in Japanese waters. The Veliger 46, 189–210.

Schulz-Mirbach, T., Ladich, F., Riesch, R., and Plath, M. (2010). Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae). Hearing Research 267, 137–148.
Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae).Crossref | GoogleScholarGoogle Scholar |

Skibinski, D. O. F. (1983). Natural selection in hybrid mussel populations. In ‘Protein Polymorphism: Adaptive and Taxonomic Significance’. Systematics Association Special Volume No. 24. (Eds G. S. Oxford, and D. Rollinson.) pp. 283–298. (Academic Press: London.)

Smith, E. A. (1874). Mollusca. In ‘The Zoology of the Voyage of H.M.S. Erebus and Terror, under the command of Captain Sir James Clark Ross, R.N., F.R.S., during the years 1839 to 1843’. (Eds J. Richardson, and J. E. Gray.) pp. 1–7. (Jason: London.)

Suter, H. (1904). Mollusca. In ‘Index Faunae Novae Zealandiae.’ (Ed. F. W. Hutton.) pp. 57–95. (Dulau: London.)

Suter, H. (1905). Revision of the New Zealand Patellidae, with descriptions of a new species and subspecies. Proceedings of the Malacological Society of London 5, 346–355.

Suter, H. (1909). The Mollusca of the Subantarctic islands of New Zealand. In ‘The Subantarctic islands of New Zealand. Reports on the Geo-physics, Geology, Zoology, and Botany of the Islands lying to the South of New Zealand, based mainly on Observations and Collections made during an Expedition in the Government Steamer “Hinemoa” (Captain J. Bollons) in November 1907.’ (Ed. C. Chilton.) pp. 1–57. (Philosophical Institute of Canterbury: Wellington.)

Suter, H. (1913) [1915]. ‘Manual of the New Zealand Mollusca. With an Atlas of Quarto Plates.’ (MacKay, Government Printer: Wellington.)

Teske, P. R., Barker, N. P., and MacQuaid, C. D. (2007). Lack of genetic differentiation among four sympatric southeast African intertidal limpets (Siphonariidae): phenotypic plasticity in a single species? The Journal of Molluscan Studies 73, 223–228.
Lack of genetic differentiation among four sympatric southeast African intertidal limpets (Siphonariidae): phenotypic plasticity in a single species?Crossref | GoogleScholarGoogle Scholar |

Valdovinos, C., and Rüth, M. (2005). Nacellidae limpets of the southern end of South America: taxonomy and distribution. Revista Chilena de Historia Natural 78, 497–517.

Vrijenhoek, R. C. (2009). Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 1713–1723.
Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFalur7F&md5=172734e56f16326cd96b29234727f25fCAS |

West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the United States of America 102, 6543–6549.
Developmental plasticity and the origin of species differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlais7g%3D&md5=f88dd3b118fe7fadaef8a5b3f3392f5eCAS |

Witt, J. D. S., Threloff, D. L., and Herbert, P. D. N. (2006). DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implication for desert spring conservation. Molecular Ecology 15, 3073–3082.
DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implication for desert spring conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKntr7N&md5=fb04869149409ffb3e77f0e19ceced0bCAS |

Yoshioka, Y., Iwata, H., Ohsawa, R., and Ninomiya, S. (2004). Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal component analysis. Annals of Botany 94, 657–664.
Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal component analysis.Crossref | GoogleScholarGoogle Scholar |