Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda : Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions
Tomislav Karanovic A C and Steven J. B. Cooper BA Department of Life Sciences, Hanyang University, Seoul 133-791, South Korea.
B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000; and Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia.
C Corresponding author. Email: tomislav.karanovic@utas.edu.au
Invertebrate Systematics 26(2) 115-192 https://doi.org/10.1071/IS11027
Submitted: 22 June 2011 Accepted: 2 February 2012 Published: 6 August 2012
Abstract
A previously unsurveyed calcrete aquifer in the Yilgarn region of Western Australia revealed an unprecedented diversity of copepods, representing 67% of that previously recorded in this whole region. Especially diverse was the genus Schizopera, with up to four morphospecies per bore and a significant size difference between them. Aims of this study were to: (1) survey the extent of this diversity using morphological and molecular tools; (2) derive a molecular phylogeny based on COI; and (3) investigate whether high diversity is a result of an explosive radiation, repeated colonisations, or both, size differentiation is a result of parallel evolution or different phylogeny, and whether Schizopera is a recent invasion in inland waters. More than 300 samples were analysed and the COI fragment successfully amplified by PCR from 43 specimens. Seven species and one subspecies are described as new, and three possible cryptic species were detected. Reconstructed phylogenies reveal that both explosive radiation and multiple colonisations are responsible for this richness, and that Schizopera is probably a recent invasion in these habitats. No evidence for parallel evolution was found, interspecific size differentiation being a result of different phylogeny. Sister species have parapatric distributions and show niche partitioning in the area of overlap.
References
Adamowicz, S. J., Manu-Marque, S., Hebert, P. D. N., and Purvis, A. (2007). Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina. Biological Journal of the Linnean Society. Linnean Society of London 90, 279–292.| Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina.Crossref | GoogleScholarGoogle Scholar |
Allford, A., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2008). Diversity and distribution of groundwater fauna in a limestone aquifer: does sampling alter the story? Invertebrate Systematics 22, 127–138.
| Diversity and distribution of groundwater fauna in a limestone aquifer: does sampling alter the story?Crossref | GoogleScholarGoogle Scholar |
Apostolov, A. (1972). Catalogue des Copépodes harpacticoides marins de la Mer Noire. Zoologischer Anzeiger 188, 202–254.
Apostolov, A. (1982). Genres et sous-genres nouveaux de la famille Diosaccidae Sars et Cylindropsyllidae Sars, Lang (Copepoda, Harpacticoidea). Acta Zoologica Bulgarica 19, 37–42.
Arlt, G. (1983). Taxonomy and ecology of some harpacticoids (Crustacea, Copepoda) in the Baltic Sea and Kattegat. Zoologische Jahrbücher. Abteilung für Systematik 110, 45–85.
Beard, J. S. (1976). ‘Vegetation survey of Western Australia, Murchison.’ (University of Western Australia Press: Perth, WA.)
Berner, D., Grandchamp, A.-C., and Hendry, A. P. (2009). Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63, 1740–1753.
| Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions.Crossref | GoogleScholarGoogle Scholar |
Bickford, D., Lohman, D. J., and Sodhi, N. S. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
| Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |
Bodin, P. (1997). Catalogue of the new marine Harpacticoid Copepods (1997 edn). Documents de travail de l’Institut royal des Sciences naturelles de Belgique 89, 1–304.
Bolnick, D. I., and Fitzpatrick, B. M. (2007). Sympatric speciation: models and empirical evidence. Annual Review of Ecology Evolution and Systematics 38, 459–487.
| Sympatric speciation: models and empirical evidence.Crossref | GoogleScholarGoogle Scholar |
Borutzky, E. W. (1972). Copepoda Harpacticoida from subterranean water of the shore of Issyk-Kul and Southern Kisilkum. Trudy Zoologicheskogo Instituta Leningrad 51, 98–119.
Boxshall, G. A., and Halsey, S. H. (2004). ‘An Introduction to Copepod Diversity.’ (The Ray Society: London.)
Boxshall, G. A., and Jaume, D. (2000). Making waves: the repeated colonization of freshwater by copepod crustaceans. Advances in Ecological Research 31, 61–79.
| Making waves: the repeated colonization of freshwater by copepod crustaceans.Crossref | GoogleScholarGoogle Scholar |
Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
| DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=815c439ad21fffe2f6b225ba242c3829CAS |
Brown, W. L., and Wilson, E. O. (1956). Character displacement. Systematic Zoology 5, 49–64.
| Character displacement.Crossref | GoogleScholarGoogle Scholar |
Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A., Cooper, S. J. B., Donnellan, S. C., Keogh, S., Leijs, R., Melville, J., Murphy, D., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
| Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=a559457ece5bb9a578fac8bd54f334b9CAS |
Chappuis, P. A. (1955). Harpacticoides psammiques du Lac Tanganika. Revue de Zoologie et de Botanique Africaines 51, 68–80.
Chappuis, P.-A., and Rouch, R. (1961). Harpacticides psammiques d’une plage près d’Accra (Ghana). Vie et Milieu 11, 605–614.
Chappuis, P. A., and Serban, M. (1953). Copépodes de la nappe phréatique de la plage d’Agigea près Constanza. Notes Biospéologiqus 8, 91–102.
Chertoprud, E. S., and Kornev, P. N. (2005). On the harpacticoid fauna of the Caspian Sea, including the description of Schizopera rybnikovi sp. n. (Copepoda: Harpacticoida: Diosaccidae). Arthropoda Selecta 14, 281–289.
Cho, J.-L., Humphreys, W. F., and Lee, S.-D. (2006a). Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia. Invertebrate Systematics 20, 9–41.
| Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia.Crossref | GoogleScholarGoogle Scholar |
Cho, J.-L., Park, J.-G., and Ranga Reddy, Y. (2006b). Brevisomabathynella gen. nov. with two new species from Western Australia (Bathynellacea, Syncarida): the first definitive evidence of predation in Parabathynellidae. Zootaxa 1247, 25–42.
Coineau, N. (2000). Adaptations to interstitial groundwater life. In ‘Ecosystems of the World, 30: Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 189–210. (Elsevier: Amsterdam.)
Coineau, N. (2001). Syncarida. In ‘Encyclopedia Biospeologica’. (Eds C. Juberthie and V. Decu.) pp. 863–876. (Societé de Biospéologica and Acdémie Roumanie: Moulis and Bucharest.)
Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., and Humphreys, W. F. (2002). Islands under the desert: molecular systematics and evolutionary origin of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16, 589–598.
| Islands under the desert: molecular systematics and evolutionary origin of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia.Crossref | GoogleScholarGoogle Scholar |
Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
| Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=0f26e3577d2ba19d9bd5f05951c30505CAS |
Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Halniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
| Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Halniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Coull, B. C. (1971). Meiobenthic Harpacticoida (Crustacea, Copepoda) from the North Carolina continental shelf. Cahiers de Biologie Marine 12, 195–237.
Culver, D., and Pipan, T. (2009). ‘The Biology of Caves and Other Subterranean Habitats.’ (Oxford University Press: Oxford.)
Culver, D. C., Kane, T., and Fong, D. W. (1995). ‘Adaptation and Natural Seection in Caves: The Evolution of Gammarus minus.’ (Harvard University Press: Cambridge.)
Dahms, H. U. (1988). Development of functional adaptation to clasping behaviour in harpacticoid copepods (Copepoda, Harpacticoida). Hydrobiologia 167/168, 505–513.
| Development of functional adaptation to clasping behaviour in harpacticoid copepods (Copepoda, Harpacticoida).Crossref | GoogleScholarGoogle Scholar |
Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2005). Stygofauna in the Pilbara region, north-west Australia: a review. Journal of the Royal Society of Western Australia 88, 167–176.
Eberhard, S. M., Halse, S. A., Williams, M. R., Scanlon, M. D., Cocking, J., and Barron, H. J. (2009). Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology 54, 885–901.
| Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOqurg%3D&md5=5399f2bafd6d1e3b2903d9e086f7363eCAS |
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
| Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |
Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S., and Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
| Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=f99babdcfa9869d7736b9ddf5f25f28dCAS |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS |
Foster, S. A., McKinnin, G. E., Steane, D. A., Potts, B. M., and Vaillancourt, R. E. (2007). Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytologist 175, 370–380.
| Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar |
Fryer, G. (1956). New species of cyclopoid and harpacticoid copepods from sandy beaches of Lake Nyasa. Annals & Magazine of Natural History 9, 225–249.
| New species of cyclopoid and harpacticoid copepods from sandy beaches of Lake Nyasa.Crossref | GoogleScholarGoogle Scholar |
Gibert, J., Danielopol, D. L., and Stanford, J. A. (1994). ‘Groundwater Ecology.’ (Academic Press: London.)
Giribet, G., and Edgecombe, G. D. (2006). The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae). Biological Journal of the Linnean Society. Linnean Society of London 89, 65–78.
| The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae).Crossref | GoogleScholarGoogle Scholar |
Glatzel, T., and Schminke, H. K. (1996). Mating behaviour of the groundwater copepod Parastenocaris phyllura Kiefer, 1938 (Copepoda: Harpacticoida). Contributions to Zoology (Amsterdam, Netherlands) 66, 103–108.
Gurney, R. (1928). Some Copepoda from Tanganyika collected by Mr S.R.B. Pask. Proceedings of the Zoological Society of London 22, 317–332.
Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., Cho, J.-L., and Austin, A. D. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
| Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
| Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrbM&md5=24f5c65b6d3a56b9e4e18f85f548ff1aCAS |
Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., Muirhead, K. A., and Tomlinson, M. (2011a). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
| Is the Australian subterranean fauna uniquely diverse?Crossref | GoogleScholarGoogle Scholar |
Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., Ong, S., Kawakami, T., and Austin, A. D. (2011b). Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert. Heredity 107, 215–230.
| Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjmslSjtQ%3D%3D&md5=c9ad53d005f38e39765d7e2b6a08a14eCAS |
Halse, S. A., Cale, D. J., Jasinska, E. J., and Shiel, R. J. (2002). Monitoring change in aquatic invertebrate biodiversity: sample size, faunal elements and analytical methods. Aquatic Ecology 36, 395–410.
| Monitoring change in aquatic invertebrate biodiversity: sample size, faunal elements and analytical methods.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S. (2002). Short-range endemism amongst the Australian fauna: examples from non-marine environments. Invertebrate Systematics 16, 555–570.
| Short-range endemism amongst the Australian fauna: examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |
Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
| Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=f35f2401e5d0b470322cd8f38bcc35c2CAS |
Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS |
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, 1657–1663.
| Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVSgu7w%3D&md5=f7dd2c951dfb307fcbb2b73026e6ada6CAS |
Hennig, W. (1966). ‘Phylogenetic Systematics.’ (University of Illinois Press: Champaign, IL, USA.)
Holmgren, M., Stapp, P., Dickman, C. R., Gracia, C., Graham, S., Gutiérrez, J. R., Hice, C., Jaksic, F., Kelt, D. A., Letnic, M., Lima, M., López, B. C., Meserve, P. L., Milstead, W. B., Polis, G. A., Previtali, M. A., Richter, M., Sabate, S., and Squeo, F. A. (2006). Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment 4, 87–95.
| Extreme climatic events shape arid and semiarid ecosystems.Crossref | GoogleScholarGoogle Scholar |
Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxford, England) 17, 754–755.
| MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=89aaec60163cef8dac4fe0ecf046c64cCAS |
Humphreys, W. F. (2000). Background and glossary. In ‘Ecosystems of the World, 30: Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 3–14. (Elsevier: Amsterdam.)
Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum , 63–83.
Humphreys, W. F. (2006). Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54, 115–132.
| Aquifers: the ultimate groundwater-dependent ecosystems.Crossref | GoogleScholarGoogle Scholar |
Humphreys, W. F. (2008). Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater perspective. Invertebrate Systematics 22, 85–101.
| Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater perspective.Crossref | GoogleScholarGoogle Scholar |
Huys, R. (2009). Unresolved cases of type fixation, synonymy and homonymy in harpacticoid copepod nomenclature (Crustacea: Copepoda). Zootaxa 2183, 1–99.
Huys, R., and Boxshall, G. A. (1991). ‘Copepod Evolution.’ (The Ray Society: London.)
Karanovic, T. (2004). Subterranean Copepoda from arid Western Australia. Crustaceana Monographs 3, 1–366.
Karanovic, T. (2006). Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Records of the Western Australian Museum , 1–239.
Karanovic, I. (2007). Candoninae ostracods from the Pilbara region in Western Australia. Crustaceana Monographs 7, 1–432.
Karanovic, T. (2008). Marine interstitial Poecilostomatoida and Cyclopoida (Copepoda) of Australia. Crustaceana Monographs 9, 1–331.
Karanovic, T. (2010). First record of the harpacticoid genus Nitocrellopsis (Copepoda, Ameiridae) in Australia, with descriptions of three new species. International Journal of Limnology 46, 249–280.
| First record of the harpacticoid genus Nitocrellopsis (Copepoda, Ameiridae) in Australia, with descriptions of three new species.Crossref | GoogleScholarGoogle Scholar |
Karanovic, T., and Cooper, S. J. B. (2011). Molecular and morphological evidence for short range endemism in the Kinnecaris solitaria complex (Copepoda: Parastenocarididae), with description of seven new species. Zootaxa 3026, 1–64.
Karanovic, T., and Hancock, P. (2009). On the diagnostic characters of the genus Stygonitocrella (Copepoda, Harpacticoida), with descriptions of seven new species from Australian subterranean waters. Zootaxa 2324, 1–85.
Karanovic, T., and Tang, D. (2009). A new species of the copepod genus Australoeucyclops (Crustacea: Cyclopoida: Eucyclopinae) from Western Australia shows the role of aridity in habitat shift and colonization of ground water. Records of the Western Australian Museum 25, 247–263.
Karanovic, T., Eberhard, S. M., and Murdoch, A. (2011). A cladistic analysis and taxonomic revision of Australian Metacyclops and Goniocyclops, with description of four new species and three new genera (Copepoda, Cyclopoida). Crustaceana 84, 1–67.
| A cladistic analysis and taxonomic revision of Australian Metacyclops and Goniocyclops, with description of four new species and three new genera (Copepoda, Cyclopoida).Crossref | GoogleScholarGoogle Scholar |
Kiefer, F. (1934). Neue Ruderfusskrebse von der Insel Haiti. Zoologischer Anzeiger 108, 227–233.
King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., and Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of Crustacean Biology 32, 465–488.
Klie, W. (1923). Über eine neue Brackwasserart der Harpacticoiden-Gattung Amphiascus. Archiv fuer Hydrobiologie 14, 335–339.
Kubota, K., and Sota, T. (1998). Hybridization and speciation in the carabid beetles of the subgenus Ohomopterus (Coleoptera, Carabidae, genus Carabus). Researches on Population Ecology 40, 213–222.
| Hybridization and speciation in the carabid beetles of the subgenus Ohomopterus (Coleoptera, Carabidae, genus Carabus).Crossref | GoogleScholarGoogle Scholar |
Kumar, S., Dudley, J., Nei, M., and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299–306.
| MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrg%3D&md5=dbb82b931f522447e58674918576e8bdCAS |
Lang, K. (1948). ‘Monographie der Harpacticiden, A-B.’ (Nordiska Bokhandeln: Lund, Sweden.)
Lang, K. (1965a). Copepoda Harpacticoida from the Californian Pacific Coast. Almquist and Wiksell, Stockholm 10, 1–560.
Lang, K. (1965b). Copepoda Harpacticoidea aus dem Kustengrundwasser dicht bei dem Askölaboratorium. Arkiv för Zoologi 18, 73–83.
Langecker, T. G. (2000). The effect of continous darkness on cave ecology and cavernicolous evolution. In ‘Ecosystems of the World, 30: Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 135–157. (Elsevier: Amsterdam.)
Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimination. Molecular Phylogenetics and Evolution 40, 435–447.
| Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimination.Crossref | GoogleScholarGoogle Scholar |
Lescher-Moutoué, F. (1973). Sur la biologie et l’écologie des copepods cyclopides hypogés (Crustacés). Annales de Spéléologie 28, 429–674.
Leyequién, E., de Boer, W. F., and Cleef, A. (2007). Influence of body size on coexistence of bird species. Ecological Research 22, 735–741.
| Influence of body size on coexistence of bird species.Crossref | GoogleScholarGoogle Scholar |
Leys, R., and Watts, C. H. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22, 217–225.
| Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus.Crossref | GoogleScholarGoogle Scholar |
Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66, 533–563.
| Cenozoic climatic change and the development of the arid vegetation in Australia.Crossref | GoogleScholarGoogle Scholar |
Mayr, E. (1963). ‘Animal Species and Evolution.’ (Harvard University Press: Cambridge, MA, USA.)
Mayr, E. (2001). ‘What Evolution Is.’ (Basic Books: New York, NY, USA.)
Mielke, W. (1975). Systematik der Copepoda eines Sandstrandes der Nordseeinsel Sylt. Mikrofauna des Meeresbodens 52, 1–134.
Mielke, W. (1992). Description of some benthic Copepoda from Chile and a discussion on the relationships of Paraschizopera and Schizopera (Diosaccidae). Microfauna Marina 7, 79–100.
Mielke, W. (1995). Species of the taxon Schizopera (Copepoda) from the Pacific coast of Costa Rica. Microfauna Marina 10, 89–116.
Mirabdullayev, I. M., and Ginatullina, E. N. (2007). The genus Schizopera (Copepoda, Harpacticoida) in Uzbekistan (central Asia). Vestnik Zoologii 41, 305–313.
Nagel, L., and Schluter, D. (1998). Body size, natural selection, and speciation in stickleback. Evolution 52, 209–218.
| Body size, natural selection, and speciation in stickleback.Crossref | GoogleScholarGoogle Scholar |
Noodt, W. (1954). Sandstrand-Copepoden von der schwedischen Ostküste. Kungl. Fysiografiska Sallskapets I Lund Forhandlingar 24, 1–8.
Noodt, W. (1955). Harpacticiden (Crust. Cop.) aus dem Sandstrand der französischen Biscaya-Küste. Kieler Meeresforschungen 11, 86–109.
Noodt, W. (1958). Schizopera pratensis n. sp. von Salzwiesen der deutschen Meeresküste (Crustacea, Copepoda). Kieler Meeresforschungen 14, 223–225.
Petkovski, T. K. (1954). Harpacticiden des Grundwassers unserer Meeresküste. Acta Musei Macedonici Scientiarum Naturalium 2, 93–123.
Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121–127.
| Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar |
Pipan, T., and Brancelj, A. (2003). Fauna of epikarst – Copepoda (Crustacea) in percolation water of caves in Slovenia. Annales Series Historia Naturalis (Koper) 13, 223–228.
Pipan, T., and Brancelj, A. (2004). Distribution patterns of copepods (Crustacea: Copepoda) in percolation water of the Postojnska Jama cave system (Slovenia). Zoological Studies 43, 206–210.
Por, F. D. (1968). The benthic Copepoda of Lake Tiberias and of some inflowing springs. Israel Journal of Zoology 17, 31–50.
Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
| Modeltest: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=96deade1c75c4e555f1a98ea1a9c9435CAS |
Quesada, H., Posada, D., Caballero, A., Moran, P., and Rolan-Alvarez, E. (2007). Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 61, 1600–1612.
| Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail.Crossref | GoogleScholarGoogle Scholar |
Rambaut, A., and Drummond, A. J. (2007). Tracer: MCMC Trace Analysis Package. Available at http://tree.bio.ed.ac.uk/software/tracer/ [verified June 2012]
Rodríguez, F., Oliver, J. F., Marín, A., and Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology 142, 485–501.
| The general stochastic model of nucleotide substitutions.Crossref | GoogleScholarGoogle Scholar |
Romer, A. S. (1960). Explosive evolution. Zoologische Jahrbucher 88, 79–90.
Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
| MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=9c53a6e1009ac0a4829f70ecd07199e1CAS |
Rouch, R., and Chappuis, P. A. (1960). Sur quelques Copépodes Harpacticoides du lac Tanganika. Revue de Zoologie et de Botanique Africaines 61, 283–286.
Rundle, H. D., Nagel, L., Wenrick Boughman, J., and Schluter, D. (2000). Natural selection and parallel speciation in sympatric stricklbacks. Science 287, 306–308.
| Natural selection and parallel speciation in sympatric stricklbacks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVWqug%3D%3D&md5=ec87df1d549bb3aacc81c9868b6292f6CAS |
Ryan, P. G., Bloomer, P., Moloney, C. L., Grant, T. J., and Delport, W. (2007). Ecological speciation in south Atlantic island finches. Science 315, 1420–1423.
| Ecological speciation in south Atlantic island finches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKrsrc%3D&md5=2ed2cb5785a8f424bec16bdbc32e7cc4CAS |
Sakaguchi, S. O., and Ueda, H. (2010). A new species of Pseudodiaptomus (Copepoda: Calanoida) from Japan, with notes on closely related P. inopinus Bruckhardt, 1913 from Kyushu Island. Zootaxa 2623, 52–68.
Sanders, C. C. (1973). Hydrogeology of a calcrete deposit on Paroo Station, Wiluna, and surrounding areas. Western Australian Geological Survey Annual Report 1973, 15–26.
Sars, G. O. (1905). Pacifische Plankton-Crustaceen; Ergebnisse einer Reise nach dem Pacific Schauinsland 1896–1897, II. Brackwasser-Crustaceen von den Chatham-Inseln. Zoologische Jahrbücher. Abteilung für Systematik 21, 371–414.
Sars, G. O. (1909). Zoological results of the third Tanganyika expedition, report on the Copepoda. Proceedings of the Zoological Society of London 1909, 31–77.
Savolainen, V., Anstett, M. C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., Powell, M. P., Springate, D., Salamin, N., and Baker, W. J. (2006). Sympatric speciation in palms on an oceanic island. Nature 441, 210–213.
| Sympatric speciation in palms on an oceanic island.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGnsrs%3D&md5=de466c8069e3c05690e7ab09c6df7c85CAS |
Sota, T., Takami, Y., Kubota, K., Ujiie, M., and Ishikawa, R. (2000). Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan. Population Ecology 42, 279–291.
| Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan.Crossref | GoogleScholarGoogle Scholar |
Soyer, J. (1974). Harpacticoïdes (Crustacés Copépodes) de l’archipel de Kerguelen, 1. Quelques forms mésopsammiques. Bulletin du Muséum National d’Historie Naturelle. Zoologie 168, 1169–1222.
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web-servers.Crossref | GoogleScholarGoogle Scholar |
Stock, J. K., and von Vaupel Klein, J. C. (1996). Mounting media revisited: the suitability of Reyne’s fluid for small crustaceans. Crustaceana 69, 794–798.
| Mounting media revisited: the suitability of Reyne’s fluid for small crustaceans.Crossref | GoogleScholarGoogle Scholar |
Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10.’ (Sinauer Associates: Sunderland, MA, USA.)
Watts, C. H. S., and Humphreys, W. F. (2006). Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts and Humphreys from underground waters in Australia. Transaction of the Royal Society of South Australia 130, 123–185.
Watts, C. H. S., and Humphreys, W. F. (2009). Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp and Exocelina Broun, from underground waters in Australia. Transactions of the Royal Society of South Australia 133, 62–107.
Wells, J. B. J. (2007). An annotated checklist and keys to the species of Copepoda Harpacticoida. Zootaxa 1568, 1–872.
Wells, J. B. J., and Rao, G. C. (1976). The relationship of the genus Schizopera Sars within the family Diosaccidae (Copepoda: Harpacticoida). Zoological Journal of the Linnean Society 58, 79–90.
| The relationship of the genus Schizopera Sars within the family Diosaccidae (Copepoda: Harpacticoida).Crossref | GoogleScholarGoogle Scholar |
Weston, P. H., and Crisp, M. D. (1994). Cladistic biogeography of waratahs (Proteaceae: Embothrieae) and their allies across the Pacific. Australian Systematic Botany 7, 225–249.
| Cladistic biogeography of waratahs (Proteaceae: Embothrieae) and their allies across the Pacific.Crossref | GoogleScholarGoogle Scholar |
Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
| The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |
Willen, E. (2000). ‘Phylogeny of the Thalestridimorpha Lang, 1944 (Crustacea, Copepoda).’ (Cuvillier Verlag: Goettingen.)
Wilson, G. D. F. (2008). Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebrate Systematics 22, 301–310.
| Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand.Crossref | GoogleScholarGoogle Scholar |
Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
| Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGjtw%3D%3D&md5=bd3460dd82033a0f83fcb393ea13c78aCAS |