Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The puzzle of DNA sequences of Phytoseiidae (Acari : Mesostigmata) in the public GenBank database

Marie-Stéphane Tixier A B , Fabio Akashi Hernandes A , Sabine Guichou A and Serge Kreiter A
+ Author Affiliations
- Author Affiliations

A Montpellier SupAgro, Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations (INRA/IRD/CIRAD/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez, France.

B Corresponding author. Email: tixier@supagro.inra.fr

Invertebrate Systematics 25(5) 389-406 https://doi.org/10.1071/IS11013
Submitted: 3 April 2011  Accepted: 7 July 2011   Published: 14 February 2012

Abstract

The public database GenBank is an increasingly important source of sequence data for diagnostic and phylogenetic research; however, not all deposited sequences are necessarily correctly ascribed to a source species. We considered the example of the mite family Phytoseiidae to determine how the corresponding sequences could be accurately exploited. Phytoseiidae mites are well known worldwide for their ability to control certain mite and insect pests. The number of molecular approaches, especially for diagnostic purposes, has increased over the past decade, leading to an increase in the number of sequences registered in the GenBank database. The aim of the present paper was to evaluate the validity of the DNA sequences presently assigned to Phytoseiidae species in this database. Three hundred and fifty-one sequences, corresponding to the four most frequently registered DNA fragments (ITS, COI, Cytb and 12S rRNA), were considered. DNA extraction, amplification and sequencing were performed for the fragments 12S rRNA and ITS for Amblyseius andersoni, A. swirskii, Iphiseius degenerans, Euseius ovalis, E. stipulatus, Neoseiulus cucumeris and Typhlodromus pyri, as some identifications were questionable. Numerous problems were evident based on genetic distance analyses of these sequences. First, nomenclatural problems were encountered, preventing the correct identification of the taxa sequenced in one case. Suspected misidentifications were frequent, stressing the importance of voucher specimen availability. For the 12S rRNA fragment, sequences assigned to three Phytoseiidae species were those of their prey (Astigmata), underlining the care that must be taken when manipulating the DNA of such predators (sterile conditions and specific PCR primers). Finally, sequences of two regions of the COI mtDNA were encountered, leading to alignment problems between sequences of a same gene and same species. These results are discussed in relation to responsibilities of authors in terms of taxon identification and the great utility of open access DNA sequence databases, such as GenBank, for improving taxonomic identifications and advancing scientific research.

Additional keywords: 12S rRNA, COI, contaminations, Cytb, ITS, misidentification.


References

Balajee, S. A., Nickle, D., Varga, J., and Marr, K. A. (2006). Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryotic Cell 5, 1705–1712.
Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFemsbjJ&md5=7a6b8509580ff81d03dbfb11615d1b39CAS |

Birky, C. W., Adams, J., Gemmel, M., and Perry, J. (2010). Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE 5, e10609.
Using population genetic theory and DNA sequences for species detection and identification in asexual organisms.Crossref | GoogleScholarGoogle Scholar |

Birky, C. W., Ricci, C., Melone, G., and Fontaneto, D. (2011). Integrating DNA and morphological taxonomy to describe diversity in poorly studied microscopic animals: new species of the genus Abrochta Bryce, 1910 (Rotifera: Bdelloidea: Philodinavidae). Zoological Journal of the Linnean Society 161, 723–734.
Integrating DNA and morphological taxonomy to describe diversity in poorly studied microscopic animals: new species of the genus Abrochta Bryce, 1910 (Rotifera: Bdelloidea: Philodinavidae).Crossref | GoogleScholarGoogle Scholar |

Blommers, L. (1976). Some Phytoseiidae (Acarina: Mesostigmata) from Madagascar, with descriptions of eight new species and notes on their biology. Bijdragen tot Dierkunde 46, 80–106.

Bridge, P. D., Spooner, B. M., and Panchal, G. (2003). On the unreliability of published DNA sequences. New Phytologist 160, 43–48.
On the unreliability of published DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1WitLc%3D&md5=7a06eca87a6196b0069974f8fb8a0534CAS |

Castagnoli, M., and Simoni, S. (1990). Biological observations and life table parameters of Amblyseius cucumeris (Oud.) (Acarina: Phytoseiidae) reared on different diets. Redia (Firenze) 73, 569–583.

Cebolla, R., Pekar, S., and Hubert, J. (2009). Prey range of the predatory mite Cheyletus malaccensis (Acari: Cheyletidae) and its efficacy in the control of seven stored-product pests. Biological Control 50, 1–16.
Prey range of the predatory mite Cheyletus malaccensis (Acari: Cheyletidae) and its efficacy in the control of seven stored-product pests.Crossref | GoogleScholarGoogle Scholar |

Chant, D. A., and McMurtry, J. A. (2007). ‘Illustrated Keys and Diagnoses for the Genera and Subgenera of the Phytoseiidae of the World (Acari: Mesostigmata).’ (Indira Publishing House: West Bloomfield, MI.)

Dermauw, W., Vanholme, B., and Van Leeuwen, T. (2010). Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome 53, 285–301.
Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCqsb0%3D&md5=202b24e78f9d3fb40f1b035217fe4c51CAS |

DeSalle, R., Egan, M. G., and Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1905–1916.
The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrnE&md5=f8c85670f20b6ef60dd4b6cbf03e6aceCAS |

Ehara, S., and Lee, L. H. Y. (1971). Mites associated with plants in Hong Kong. Journal of the Faculty of Education, Tottori University. Natural Science 22, 61–78.

Hebert, P. D. N., Cywinska, A., Ball, S. L., and de Waard, J. R. (2003). Biological identification through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
Biological identification through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS |

Hebert, P. D. N., Stoeckle, L. Y., Zemlak, T. S., and Francis, C. M. (2004). Identification of birds through DNA barcodes. PloS Biology 2, e312.
Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hinomoto, N., Shintaku, T., and Amano, H. (2010). Comparison of genetic diversity among three phytoseiid mite species in Japan by mitochondrial DNA sequence analysis. Journal of the Acarological Society of Japan 19, 9–14.
Comparison of genetic diversity among three phytoseiid mite species in Japan by mitochondrial DNA sequence analysis.Crossref | GoogleScholarGoogle Scholar |

Holst-Jensen, A., Vralstad, T., and Schumacher, T. (2004). On reliability. New Phytologist 161, 11–13.
On reliability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVWntQ%3D%3D&md5=99ff58ebbad20f732d316e2b8ccc7da7CAS |

Hoogerbrugge, H., Van Houten, Y., van Baal, E., and Bolckmans, K. (2008). Alternative food sources to enable establishment of Amblyseius swirskii (Athias-Henriot) on chrysanthemum without pest presence. Bulletin OILB/SROP 32, 79–82.

Jeyaprakash, A., and Hoy, M. A. (2002). Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biological Control 25, 136–142.
Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVCqsbg%3D&md5=1531c133caae26268a37c5b95a2b781aCAS |

Jeyaprakash, A., and Hoy, M. A. (2007). The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391, 264–274.
The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Cks78%3D&md5=2d34369f3ab9d6b5a3ec87ef93467c8fCAS |

Jeyaprakash, A., and Hoy, M. A. (2010). A DNA extraction procedure that allows mite specimens to be slide mounted: phytoseiid species evaluated as a model. Experimental & Applied Acarology 52, 131–140.
A DNA extraction procedure that allows mite specimens to be slide mounted: phytoseiid species evaluated as a model.Crossref | GoogleScholarGoogle Scholar |

Kanouh, M., Tixier, M.-S., Okassa, M., and Kreiter, S. (2010a). Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae). Zoologica Scripta 39, 450–461.
Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae).Crossref | GoogleScholarGoogle Scholar |

Kanouh, M., Tixier, M.-S., Guichou, S., and Kreiter, S. (2010b). Two synonymy cases within the genus Neoseiulella (Acari: Phytoseiidae): is the molecular evidence so evident? Biological Journal of the Linnean Society. Linnean Society of London 101, 323–344.
Two synonymy cases within the genus Neoseiulella (Acari: Phytoseiidae): is the molecular evidence so evident?Crossref | GoogleScholarGoogle Scholar |

Kostiainen, T., and Hoy, M. A. (1996). ‘The Phytoseiidae as Biological Control Agents of Pest Mites. A Bibliography (1960–1994).’ Monograph 17. (University of Florida, IFAS Publication: Florida Agricultural Experiment Station, FL.) pp. 355.

Linacre, A., and Tobe, S. S. (2011). An overview to the investigative approach to species testing in wildlife forensic science. Investigativee Genetics 2, 2.
An overview to the investigative approach to species testing in wildlife forensic science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gltrg%3D&md5=5fdd3d448316b9dd78df6a88f6ef1211CAS |

McMurtry, J. A., and Croft, B. A. (1997). Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology 42, 291–321.
Life-styles of phytoseiid mites and their roles in biological control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFWiug%3D%3D&md5=617ecd09498d1986b6bc8faf8a613081CAS |

Meier, R. (2008). DNA sequences in taxonomy: opportunities and challenges. In ‘The New Taxonomy’. (Eds Q. D. Wheeler.) pp. 95–127. (CRC Press, Taylor and Francis Group: London.)

Moraes, G. J., McMurtry, J. A., Denmark, H. A., and Campos, C. B. (2004). A revised catalog of the mite family Phytoseiidae. Zootaxa 434, 1–494.

Navajas, M., Lagnel, J., Fauvel, G., and de Moraes, G. J. (1999). Sequence variation of ribosomal internal transcribed spacer (ITS) in commercially important Phytoseiidae mites. Experimental & Applied Acarology 23, 851–859.
Sequence variation of ribosomal internal transcribed spacer (ITS) in commercially important Phytoseiidae mites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCnug%3D%3D&md5=9be623b027c9b578e91b0f393a399ed3CAS |

Nilsson, R. H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K. H., and Kaμljalg, U. (2006). Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1, e59.
Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective.Crossref | GoogleScholarGoogle Scholar |

Okassa, M., Tixier, M.-S., Cheval, B., and Kreiter, S. (2009). Molecular and morphological evidence for new species status within the genus Euseius (Acari: Phytoseiidae). Canadian Journal of Zoology 87, 689–698.
Molecular and morphological evidence for new species status within the genus Euseius (Acari: Phytoseiidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyit7fN&md5=8254991945aee4fe4a876596f1befc4cCAS |

Okassa, M., Tixier, M.-S., and Kreiter, S. (2010). Morphological and molecular diagnostic of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae). Experimental & Applied Acarology 52, 291–303.
Morphological and molecular diagnostic of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae).Crossref | GoogleScholarGoogle Scholar |

Page, R. D. M. (2005). A taxonomic search engine: federating taxonomic databases using web services. BMC Bioinformatics 6, 48.
A taxonomic search engine: federating taxonomic databases using web services.Crossref | GoogleScholarGoogle Scholar |

Pasquer, F., Pfunder, M., Frey, B., and Frey, J. E. (2011). Microarray-based genetic identification of beneficial organisms as a new tool for quality control of laboratory cultures. Biocontrol Science and Technology , .

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |

Ramadan, H. A. I., El-Banhawy, E. M., and Afia, S. I. (2009). On the identification of a taxa collected from Egypt in the species sub-group andersoni: morphological relationships with related species and molecular analysis of inter and intra-specific variations (Acari: Phytoseiidae). Acarologia 49, 115–120.

Roy, L., Dowling, A. P., Chauve, C. M., and Buronfosse, T. (2009). Delimiting species boundaries within Dermanyssus Duges, 1834 (Acari: Dermanyssidae) using a total evidence approach. Molecular Phylogenetics and Evolution 50, 446–470.
Delimiting species boundaries within Dermanyssus Duges, 1834 (Acari: Dermanyssidae) using a total evidence approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitF2qsb0%3D&md5=d39adea7d0475746e234055cfe5f1c43CAS |

Strasser, B. J. (2008). GenBank – natural history in the 21st century? Science 322, 537–538.
GenBank – natural history in the 21st century?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWjs7nP&md5=4bffe66209651e932b5ac4bae37824acCAS |

Swofford, D. L. (2002). ‘PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.08b.’ (Sinauer Associates: Sunderland, MA.)

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=ff48f25899fc988f16ef1534cf14445fCAS |

Tixier, M.-S., Kreiter, S., Ferragut, F., and Cheval, B. (2006a). The suspected synonymy of Kampimodromus hmiminai McMurtry and K. adrianae (Acari: Phytoseiidae): morphological and molecular investigations. Canadian Journal of Zoology 84, 1216–1222.
The suspected synonymy of Kampimodromus hmiminai McMurtry and K. adrianae (Acari: Phytoseiidae): morphological and molecular investigations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlelsbvP&md5=1c58a198a14d6d68f8b28851de678fd6CAS |

Tixier, M.-S., Kreiter, S., Barbar, Z., Ragusa, S., and Cheval, B. (2006b). The status of two cryptic species: Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy. Zoologica Scripta 35, 115–122.
The status of two cryptic species: Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy.Crossref | GoogleScholarGoogle Scholar |

Tixier, M.-S., Kreiter, S., Croft, B. A., and Cheval, B. (2008). Kampimodromus aberrans (Acari: Phytoseiidae) from USA: morphological and molecular assessment of its density. Bulletin of Entomological Research 98, 125–134.
Kampimodromus aberrans (Acari: Phytoseiidae) from USA: morphological and molecular assessment of its density.Crossref | GoogleScholarGoogle Scholar |

Tixier, M.-S., Ferrero, M., Okassa, M., Guichou, S., and Kreiter, S. (2010a). On the specific identity of specimens of Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) showing different feeding behaviours: morphological and molecular analyses. Bulletin of Entomological Research 17, 1–11.

Tixier, M.-S., Okassa, M., Liguori, M., Poinso, A., Salerno, B., and Kreiter, S. (2010b). Voucher specimens for DNA sequences of Phytoseiid mites (Acari: Mesostigmata) Acarologia 50, 487–494.
Voucher specimens for DNA sequences of Phytoseiid mites (Acari: Mesostigmata)Crossref | GoogleScholarGoogle Scholar |

Valkiūnas, G., Atkinson, C. T., Bensch, S., Sehgal, R. N. M., and Ricklefs, R. E. (2008). Parasite misidentifications in GenBank: how to minimize their number? Trends in Parasitology 24, 247–248.
Parasite misidentifications in GenBank: how to minimize their number?Crossref | GoogleScholarGoogle Scholar |

Vilgalys, R. (2003). Taxonomic misidentification. in public DNA databases. New Phytologist 160, 4–5.
Taxonomic misidentification. in public DNA databases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1WitLY%3D&md5=b44b7ab5babc717d3bafca060c7cb3ddCAS |

Zhang, G., and Strasser, B. J. (2009). Specimens versus sequences. Science 323, 1672.
Specimens versus sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVOnu74%3D&md5=1c659748635dbd32afbe65d00768403aCAS |