Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Evaluation of the evolution of jaw morphology in New World hirudiniform leeches, with a description of a new blood-feeding species of Oxyptychus (Annelida : Hirudiniformes) from the Peruvian Amazon

Alejandro Oceguera-Figueroa A B , Amalie K. Barrio C , Maria I. Aldea-Guevara D and Mark E. Siddall A E
+ Author Affiliations
- Author Affiliations

A Division of Invertebrate Zoology, American Museum of Natural History, Central Park, West at 79th Street, New York, NY 10024, USA.

B Department of Biology, The Graduate Center, The City University of New York, West at 79th Street, New York, NY 10024, USA.

C The Spence School, 22 East 91st Street, New York, NY 10128, USA.

D Reserva Nacional Pacaya Samiria, Región de Loreto, Perú.

E Corresponding author. Email: siddall@amnh.org

Invertebrate Systematics 26(1) 17-24 https://doi.org/10.1071/IS11005
Submitted: 6 February 2011  Accepted: 5 December 2011   Published: 19 June 2012

Abstract

Morphological characters of well-established taxonomic utility are infrequently examined for their relative phylogenetic consistency. Second only to characters of reproductive anatomy, jaw morphology and dentition commonly are employed as diagnostic characters for hirudiniform leeches, yet these features are highly variable across the group. Patterns of change were investigated for number of jaws and number of denticles per jaw in a phylogenetic context across 17 hirudiniform leeches representing three families. Phylogeny reconstruction employed 16 morphological characters, as well as two nuclear and two mitochondrial loci, and was evaluated with parsimony and likelihood. Rather than constrain the ancestral number of denticles to extant states, this meristic was optimised with squared-change parsimony. The degree to which dentition patterns were explained by phylogenetic relationships was assessed against a null distribution defined by permutation of extant states across terminals. Dentition was found to be non-randomly explained by phylogeny and, thus, corroborative of relationships among hirudiniform leeches as well as of the uniqueness of a new species of Oxyptychus described here from the Peruvian Amazon.


References

Borda, E., and Siddall, M. E. (2004). Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution. Molecular Phylogenetics and Evolution 30, 213–225.
Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1SitrY%3D&md5=f19ddbed47c3b769b553768bf85898a2CAS |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=c50b793f678fd27b54c6bfd018db39dfCAS |

Jobb, G, von Haeseler, A., and Strimmer, K. (2004). TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology 4, 18.
TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Maddison, W. P. (1991). Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40, 304–314.
Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree.Crossref | GoogleScholarGoogle Scholar |

Maddison, W. P., and Maddison, D. R. (2011). ‘Mesquite: a modular system for evolutionary analysis. Version 2.75. Available at http://mesquiteproject.org

Oceguera-Figueroa, A. (2006). A new leech species of Semiscolex (Arhynchobdellida: Semiscolecidae) from Lake Catemaco, Veracruz, Mexico. Revista Mexicana de Biodiversidad 77, 199–203.

Oceguera-Figueroa, A. (2008). A new Glossiphonid leech from Lake Catemaco, Veracruz, Mexico. Journal of Parasitology 94, 375–380.
A new Glossiphonid leech from Lake Catemaco, Veracruz, Mexico.Crossref | GoogleScholarGoogle Scholar |

Phillips, A. J., and Siddall, M. E. (2005). Phylogeny of the New World medicinal leech family Macrobdellidae (Oligochaeta: Hirudinida: Arhynchobdellida). Zoologica Scripta 34, 559–564.
Phylogeny of the New World medicinal leech family Macrobdellidae (Oligochaeta: Hirudinida: Arhynchobdellida).Crossref | GoogleScholarGoogle Scholar |

Phillips, A. J., and Siddall, M. E. (2009). Poly-paraphyly of Hirudinidae: many lineages of medicinal leeches. BMC Evolutionary Biology 9, 246.
Poly-paraphyly of Hirudinidae: many lineages of medicinal leeches.Crossref | GoogleScholarGoogle Scholar |

Phillips, A. J., Arauco-Brown, R., Oceguera-Figueroa, A., Gomez, G. P., Beltrán, M., Lai, Y. T., and Siddall, M. E. (2010). Tyrannobdella rex n. gen. n. sp. and the evolutionary origins of mucosal leech infestations. PLoS ONE 5, e10057.
Tyrannobdella rex n. gen. n. sp. and the evolutionary origins of mucosal leech infestations.Crossref | GoogleScholarGoogle Scholar |

Richardson, R. L. (1975). A contribution to the general zoology of the land leeches (Hirudinoidea: Haemadipsoidea superfam. nov.). Acta Zoologica Academiae Scientiarum Hungaricae 21, 119–152.

Richardson, R. L. (1978). On the zoological nature of land-leeches in the Seychelle Islands, and a consequential revision of the status of land-leeches in Madagascar (Hirudinoidea: Haemadipsoidea). Revue de Zoologie Africaine 92, 837–866.

Ringuelet, R. A. (1953). Notas sobre Hirudíneos neotropicales. VIII. Algunas especies de Bolivia y Perú. Notas del Museo La Plata Zoología 16, 214–224.

Ringuelet, R. A. (1976). Una nueva Diestecostoma de la zona costera del Perú (D. trujillensis n. sp., Hirudinea, Diestecostomatidae) y diagnosis de esta familia. Neotropica 22, 67–76.

Ringuelet, R. A. (1982). Nesophilamonidae nov. fam. de Hirudiniformes Haemadipsoidea. Neotropica 28, 3–6.

Ringuelet, R. A. (1985). Annulata, Hirudinea. Fauna de Agua Dulce de la República Argentina. Fundación Para la Educación, la Ciencia y la Cultura 15, 5–51.

Sawyer, R. T. (1986). ‘Leech Biology and Behaviour.’ (Clarendon Press: Oxford.) pp. 1065.

Shain, D. H., Aldea Guevara, M. I., Coral, A. L., Crampton, W. G. R., and Albert, J. S. (2007). A survey of freshwater annelids in the Peruvian Amazon, South America. Acta Hydrobiologica Sinica 31, 47–51.

Siddall, M. E. (1998). Stratigraphic fit to phylogenies: a proposed solution. Cladistics 14, 201–208.

Siddall, M. E. (2001). Computer intensive randomization in systematics. Cladistics 17, S35–S52.
Computer intensive randomization in systematics.Crossref | GoogleScholarGoogle Scholar |

Siddall, M. E., Budinoff, R. B., and Borda, E. (2005). Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae. Invertebrate Systematics 19, 105–112.
Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae.Crossref | GoogleScholarGoogle Scholar |

Siddall, M. E., Bely, A. E., and Borda, E. (2006). Hirudinida. In ‘Reproductive Biology and Phylogeny of Annelida’. (Eds G. Rouse and F. Pliejel.) pp. 393–429. (Science Publishers: Enfield, NH.)

Swofford, D. L. (2002). ‘PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods).’ Version 4.0b10. (Sinauer Associates: Sunderland, MA.)

Tao, N., Richardson, R., Bruno, W., and Kuiken, C. (2008). Find model. Available from. http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html [Verified 20 October 2010]