A new brooding species of the biscuit star Tosia (Echinodermata : Asteroidea : Goniasteridae), distinguished by molecular, morphological and larval characters
Kate M. Naughton A B C and Timothy D. O’Hara AA Sciences Department, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.
B Department of Zoology, University of Melbourne, Vic. 3010, Australia.
C Corresponding author. Email: kmnaughton@gmail.com
Invertebrate Systematics 23(4) 348-366 https://doi.org/10.1071/IS08021
Submitted: 8 May 2008 Accepted: 13 July 2009 Published: 30 October 2009
Abstract
The biscuit star Tosia australis Gray, 1840 is a well known component of the shallow rocky reef fauna of south-eastern Australia. The putative T. australis species complex was subjected to reproductive, morphometric and molecular analyses. Molecular analyses of the data from three markers (mitochondrial COI and 16S rRNA and the nuclear non-coding region ITS2) confirmed the presence of a cryptic species, the morphology of which does not agree with any of the existing nominal species. Two separate reproductive modes were observed within the complex and documented via scanning electron microscopy. T. neossia, sp. nov., described herein from south-eastern Australia, is shown to release gametes from gonopores on the actinal surface. Embryos develop first into non-feeding, non-swimming brachiolaria, and then into tripod brachiolaria before metamorphosis. No surface cilia are present at any point throughout development of T. neossia. T. australis sensu stricto is shown to release gametes from the abactinal surface. Embryos develop into non-feeding, swimming brachiolaria before metamorphosis. Whereas T. australis var. astrologorum is confirmed as synonymous with T. australis, the status of the putative Western Australian taxon T. nobilis remains unresolved.
Additional keywords: Bayesian phylogenetic analysis, brooding, cilia, colouration, larval morphology, life-history evolution, mitochondrial DNA, nuclear DNA.
Acknowledgements
Special thanks to Richard Emlet for providing specimens and larvae of Tosia australis for the study. Many thanks go also to Maria Byrne and Paula Cisternas (University of Sydney), Andrew Cabrinovic (British Museum of Natural History, London), Marc Eléaume (Muséum National d’Histoire Naturelle, Paris), Nick Kirby (Melbourne Aquarium), Carsten Lueter (Museum für Naturkunde, Berlin), David Macmillan and Joan Clark (University of Melbourne), Benjamin Ong (Museum Victoria) and Genefor Walker-Smyth (Tasmanian Museum and Art Gallery) for their invaluable contributions to this project. David Staples (Museum Victoria) provided the photographs used in Figs 1 and 8.
Atwood D. G.
(1973) Larval development in the asteroid Echinaster echinophorus. Biological Bulletin 144, 1–11.
| Crossref | GoogleScholarGoogle Scholar |
Bennett I., Pope E. C.
(1960) Intertidal zonation of the exposed rocky shores of Tasmania and the relationship with the rest of Australia. Australian Journal of Marine and Freshwater Research 11, 182–219.
| Crossref | GoogleScholarGoogle Scholar |
Birkeland C.,
Chia F.-S., Strathmann R. R.
(1971) Development, substratum selection, delay of metamorphosis and growth in the seastar, Mediaster aequalis Stimpson. Biological Bulletin 141, 99–108.
| Crossref | GoogleScholarGoogle Scholar |
Bosch I.
(1989) Contrasting modes of reproduction in two Antarctic asteroids of the genus Porania, with a description of unusual feeding and non-feeding larval types. Biological Bulletin 177, 77–82.
| Crossref | GoogleScholarGoogle Scholar |
Byrne M.
(1992) Reproduction of sympatric populations of Patiriella gunnii, P. calcar and P. exigua in New South Wales, astrinid seastars with direct development. Marine Biology 114, 297–316.
| Crossref | GoogleScholarGoogle Scholar |
Byrne M.
(1995) Changes in larval morphology in the evolution of benthic development by Patiriella exigua (Asteroidea: Asterinidae), a comparison with the larvae of Patiriella species with planktonic development. Biological Bulletin 188, 293–305.
| Crossref | GoogleScholarGoogle Scholar |
Byrne M.
(2005) Viviparity in the sea star Cryptasterina hystera (Asterinidae) – conserved and modified features in reproduction and development. Biological Bulletin 208, 81–91.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Byrne M.
(2006) Life history diversity and evolution in the Asterinidae. Integrative and Comparative Biology 46, 243–254.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Byrne M., Cerra A.
(2000) Lipid dynamics in the embryos of Patiriella species (Asteroidea) with divergent modes of development. Development, Growth & Differentiation 42, 79–86.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Byrne M.,
Hart M. W.,
Cerra A., Cisternas P.
(2003) Reproduction and larval morphology of broadcasting and viviparous species in the Cryptasterina species complex. Biological Bulletin 205, 285–294.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chia F.-S.
(1968) The embryology of a brooding starfish, Leptasterias hexactis (Stimpson). Acta Zoologica 49, 321–364.
Clark A. M.
(1953) Notes on Asteroids in the British Museum (Natural History). IV. Tosia and Pentagonaster. Bulletin of the British Museum (Natural History) – Zoology plates 42–46. 1, 396–411.
Clark H. L.
(1928) The sea-lilies, sea-stars, brittle stars and sea-urchins of the South Australian Museum. Records of the South Australian Museum figs 108–142. 3, 361–482.
Drummond A. J., Rambaut A.
(2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214–221.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Emlet R. B.
(1994) Body form and patterns of ciliation in nonfeeding larvae of echinoderms: functional solutions to swimming in the plankton? American Zoologist 34, 570–585.
Gosselin P., Jangoux M.
(1998) From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata: Echinoidea). Zoomorphology 118, 31–43.
| Crossref | GoogleScholarGoogle Scholar |
Gray J. E.
(1840) A synopsis of the genera and species of the class Hypostoma (Asterias, Linnaeus). Annals and Magazine of Natural History 6, 175–184.
Haesaerts D.,
Jangoux M., Flammang P.
(2006) Adaptations to benthic development: functional morphology of the attachment complex of the brachiolaria larva in the sea star Asterina gibbosa. Biological Bulletin 211, 172–182.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hall T.
(1998) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
Hamel J.-F., Mercier A.
(1995) Prespawning behavior, spawning, and development of the brooding starfish, Leptasterias polaris. Biological Bulletin 188, 32–45.
| Crossref | GoogleScholarGoogle Scholar |
Hart M. W.,
Byrne M., Smith M. J.
(1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51, 1848–1861.
| Crossref | GoogleScholarGoogle Scholar |
Hart M. W.,
Byrne M., Johnson S. L.
(2003)
Patiriella pseudoexigua (Asteroidea: Asterinidae): a cryptic species complex revealed by molecular and embryological analyses. Journal of the Marine Biological Association of the United Kingdom 83, 1109–1116.
| Crossref | GoogleScholarGoogle Scholar |
Hart M. W.,
Johnson S. L.,
Addison J. A., Byrne M.
(2004) Strong character incongruence and character choice in phylogeny of sea stars of the Asterinidae. Invertebrate Biology 123, 343–356.
Hart M. W.,
Keever C. S.,
Dartnall A. J., Byrne M.
(2006) Morphological and genetic variation indicate cryptic species within Lamarck’s little sea star, Parvulastra (=Patiriella) exigua. Biological Bulletin 210, 158–167.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Himmelman J. H.,
Lavergne Y.,
Cardinal A.,
Martel G., Jalbert P.
(1982) Brooding behaviour of the Northern Sea Star Leptasterias polaris. Marine Biology 68, 235–240.
| Crossref | GoogleScholarGoogle Scholar |
Knowles L. L., Carstens B. C.
(2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887–895.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Knowlton N.
(1993) Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
| Crossref | GoogleScholarGoogle Scholar |
Knowlton N.
(2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Komatsu M.,
Kano Y. T.,
Yoshizawa H.,
Akabane S., Oguro C.
(1979) Reproduction and development of the hermaphroditic sea-star, Asterina minor Hayashi. Biological Bulletin 157, 258–274.
| Crossref | GoogleScholarGoogle Scholar |
Kumar S.,
Tamura K.,
Jakobsen B., Nei M.
(2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Livingstone A. A.
(1932) The Australian species of Tosia (Asteroidea). Records of the Australian Museum plates 43–44. 18, 373–382.
Mah C.
(2005) A phylogeny of Iconaster and Glyphodiscus (Echinodermata, Asteroida, Valvata, Goniasteridae) with descriptions of four new species. Zoosystema 27, 137–161.
Mah C.
(2007) Systematics, phylogeny and historical biogeography of the Pentagonaster clade (Asteroidea: Valvatida: Goniasteridae). Invertebrate Systematics 21, 311–339.
| Crossref | GoogleScholarGoogle Scholar |
McClintock J. B.,
Watts S. A.,
Marion K. R., Hopkins T. S.
(1995) Gonadal cycle, gametogenesis and energy allocation in two sympatric mid shelf sea stars with contrasting modes of reproduction. Bulletin of Marine Science 57, 442–452.
McEdward L. R., Janies D. A.
(1997) Relationships among development, ecology and morphology in the evolution of echinoderm larvae and life cycles. Biological Journal of the Linnean Society. Linnean Society of London 60, 381–400.
| Crossref | GoogleScholarGoogle Scholar |
McEdward L. R., Miner B. G.
(2001) Larval and life-cycle patterns in echinoderms. Canadian Journal of Zoology 79, 1125–1170.
| Crossref | GoogleScholarGoogle Scholar |
Müller J., Troschel F. H.
(1843) Neue Beitrage zur Kenntnis der Asteriden. Archiv für naturgeschichte 9, 113–131.
O’Loughlin P. M., Waters J. M.
(2004) A molecular and morphological revision of genera of Asterinidae (Echinodermata: Asteroidea). Memoirs of Museum Victoria 61, 1–40.
Pernet B.
(2003) Persistent ancestral feeding structures in nonfeeding annelid larvae. Biological Bulletin 205, 295–307.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Perrier E.
(1869) Recherches sur les Pédicellaires et les Ambulacres des Astéries et des Oursins. Annales des Sciences Naturelles 12, 197–304.
Posada S., Crandall K. A.
(1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Prowse T. A. A.,
Sewell M. A., Byrne M.
(2007) Fuels for development: evolution of maternal provisioning in asterinid sea stars. Marine Biology 153, 337–349.
| Crossref | GoogleScholarGoogle Scholar |
Ronquist F., Huelsenbeck J. P.
(2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Scheibling R. E., Lawrence J. M.
(1982) Differences in reproductive strategies of morphs of the genus Echinaster (Echinodermata: Asteroidea) from the Eastern Gulf of Mexico. Marine Biology 70, 51–62.
| Crossref | GoogleScholarGoogle Scholar |
Shepherd S. A.
(1968) The shallow water echinoderm fauna of South Australia: Part 1. The asteroids. Records of the South Australian Museum 15, 729–756.
Thompson J. D.,
Higgins D. G., Gibson T. J.
(1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Tyler P. A., Pain S. L.
(1982) Observations of gametogenesis in the deep-sea asteroids Paragonaster subtilis and Pseudarchaster parelii (Phanerozonia, Goniasteridae). International Journal of Invertebrate Reproduction 5, 269–272.
Villinski J. T.,
Villinski J. T.,
Byrne M., Raff R. A.
(2002) Convergent maternal provisioning and life history evolution in echinoderms. Evolution 56, 1764–1775.
| PubMed |
Waters J. M., Roy M. S.
(2003) Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. Journal of Biogeography 30, 1787–1796.
| Crossref | GoogleScholarGoogle Scholar |
Appendix 1. List of specimens sequenced for the current study
Haplotype codes are referred to on the phylogenetic trees (Figs 2, 3). Composite mitochondrial haplotype names shown on the mitochondrial tree consist of a numeral referring to the 16S haplotype and a letter referring to the COI haplotype, as shown in the table