Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera : Curculionidae)
Jonas J. Astrin A and Peter E. Stüben BA ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany. Email: j.astrin.zfmk@uni-bonn.de
B Curculio Institute, Hauweg 62, D-41066 Mönchengladbach, Germany. Email: p.stueben@t-online.de
Invertebrate Systematics 22(5) 503-522 https://doi.org/10.1071/IS07057
Submitted: 14 November 2007 Accepted: 29 July 2008 Published: 4 December 2008
Abstract
A phylogeny is presented for the western Palaearctic representatives of the weevil subfamily Cryptorhynchinae using a combination of phenotypic and genotypic characters. This phylogeny is the first for the extremely species-rich Cryptorhynchinae to use molecular data (mitochondrial CO1 and 16S as well as nuclear ribosomal 28S). The results of this study show the need for molecular tools within this morphologically cryptic group of weevils and provide a scaffold based on which genus assignment can be tested. The present study mostly corroborates the current subdivision into genera (but many of the subgeneric groups are questioned). Three new genera are described: Montanacalles gen. nov. (type species: Kyklioacalles nevadaensis Stüben, 2001), Coloracalles gen. nov. (type species: Acalles humerosus Fairmaire, 1862) and Elliptacalles gen. nov. (type species: Acalles longus Desbrochers, 1892). Relevant external characters and the male genitalia of all discussed taxa are illustrated. Three species are transferred to different genera: Kyklioacalles aubei (Boheman, 1837) (formerly: Acalles), Ruteria major (Solari A. & F., 1907) and Ruteria minosi (Bahr & Bayer, 2005) (both formerly Echinodera).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (grant WA 530/36-1). We are indebted to R. Anderson, F. Bahr, Ch. Bayer, T. Clayhills, J. Longino, S. Scharf and R. Stejskal for contributing specimens. We also thank C. Etzbauer for the ordering of laboratory consumables and two anonymous referees, B. Misof, J. Skuhrovec, W. Wägele, R. Anderson, T. Swinehart, Ch. Bayer, K. Meusemann, L. Behne and the ZFMK laboratory crew for discussions or information.
Anderson R. S.
(2008) A review of the genus Cryptorhynchus Illiger 1807 in the United States and Canada (Curculionidae: Cryptorhynchinae). Coleopterists Bulletin 62, 168–180.
| Crossref | GoogleScholarGoogle Scholar |
Astrin J. J.,
Huber B. A.,
Misof B., Klütsch C. F.
(2006) Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta 35, 441–457.
| Crossref | GoogleScholarGoogle Scholar |
Astrin J. J.,
Huber B. A., Misof B.
(2007) The pitfalls of exaggeration: molecular and morphological evidence suggests Kaliana is a synonym of Mesabolivar (Araneae: Pholcidae). Zootaxa 1646, 17–30.
Berger J.
(2006) The case for objective Bayesian analysis. Bayesian Analysis (Online) 1, 385–402.
Bergsten J.
(2005) A review of long-branch attraction. Cladistics 21, 163–193.
| Crossref | GoogleScholarGoogle Scholar |
Björklund M.
(1999) Are third positions really that bad? A test using vertebrate cytochrome b. Cladistics 15, 191–197.
Brisout H.
(1864) Monographie des espèces europèennes et algériennes du genre Acalles. Annales de la Société Entomologique de France 4, 441–482.
Caldara R.
(1973)
Echinodera graeca n.sp. e considerazioni su altre specie del genere. Atti della Società italiana di Scienze naturali e del Museo Civico di Storia naturale di Milano 114, 396–402.
Crandall K. A., Fitzpatrick J. E.
(1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45, 1–26.
| Crossref | GoogleScholarGoogle Scholar |
Darlu P., Lecointre G.
(2002) When does the incongruence length difference test fail? Molecular Biology and Evolution 19, 432–437.
|
CAS |
PubMed |
Desbrochers J.
(1892) Espéces inédites de Curculionides de l’Ancien Monde. Frelon 2, 88–101.
Edgar R. C.
(2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Edgar R. C.
(2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Fairmaire L. M. H.
(1862) Miscellanea Entomologica. Coleoptera. Annales de la Société Entomologique de France 4, 547–558.
Farris J. S.,
Kallersjö M.,
Kluge A. G., Bult C.
(1994) Testing significance of incongruence. Cladistics 10, 315–319.
| Crossref | GoogleScholarGoogle Scholar |
Felsenstein J.
(1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39, 783–791.
| Crossref | GoogleScholarGoogle Scholar |
Folmer O.,
Black M.,
Hoeh W.,
Lutz R., Vrijenhoek R.
(1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
|
CAS |
PubMed |
Giribet G., Wheeler W. C.
(1999) On gaps. Molecular Phylogenetics and Evolution 13, 132–143.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Gleeson D. M.,
Rowell D. M.,
Tait N. N.,
Briscoe D. A., Higgins A. V.
(1998) Phylogenetic relationships among Onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution 10, 237–248.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Hasegawa M.,
Kishino H., Yano T.
(1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Hoffmann A.
(1958) Coléoptères Curculionides (Troisième Partie). Faune de France 62, 1210–1839.
Huelsenbeck J. P., Bollback J. P.
(2001) Empirical and hierarchical Bayesian estimation of ancestral states. Systematic Biology 50, 351–366.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Huelsenbeck J. P., Ronquist F.
(2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Huelsenbeck J. P.,
Larget B.,
Miller R. E., Ronquist F.
(2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51, 673–688.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kimura M.
(1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Lanave C.,
Preparata G.,
Saccone C., Serio G.
(1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 86–93.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Morrison D. A., Ellis J. T.
(1997) Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa. Molecular Biology and Evolution 14, 428–441.
|
CAS |
PubMed |
Paulay G.
(1985) Adaptive radiation on an isolated oceanic island – the Cryptorhynchinae (Curculionidae) of Rapa revisited. Biological Journal of the Linnean Society 26, 95–187.
| Crossref | GoogleScholarGoogle Scholar |
Posada D., Buckley T. R.
(2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Posada D., Crandall K. A.
(1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Ronquist F., Huelsenbeck J. P.
(2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Ros V., Breeuwer J.
(2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental & Applied Acarology 42, 239–262.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Roudier A.
(1954) Etude des Acalles et Echinodera (Col., Curculionidae) des Îles Canaries et plus particulièrement du matériel recueille par le Dr. Hakan Lindberg au cours des années 1947 à 1950. Commentationes Biologicae 14, 1–16.
Savitsky V. Y.
(1997) Review of weevils from the genus Ruteria (Coleoptera, Curculionidae) in the fauna of Russia and adjacent countries. Zoologicheskij Zhurnal 76, 785–796.
Schwarz G.
(1978) Estimating the dimension of a model. The Annals of Statistics 6, 461–464.
| Crossref | GoogleScholarGoogle Scholar |
Simmons M. P., Ochoterena H.
(2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Solari A., Solari F.
(1907) Studii sugli Acalles. Annali del Museo Civico di Storia Naturale Giacomo Doria 3, 479–551.
Stüben P. E.
(1998) Die südeuropäischen Arten der Gattung Echinodera Wollaston und die Gattung Ruteria Roudier stat. nov. (Cryptorhynchinae–Studie 2.) Beitraege zur Entomologie 48, 417–448.
Stüben P. E.
(1999a) Taxonomie und Phylogenie der westpaläarktischen Arten der Gattung Kyklioacalles g. n. (Coleoptera: Curculionidae: Cryptorhynchinae). (Cryptorhynchinae–Studie 3.) Stuttgarter Beitrage zur Naturkunde. Serie A, Biologie 584, 1–38.
Stüben P. E.
(1999b) Die westpaläarktischen Arten der Gattung Onyxacalles g. n. (Coleoptera: Curculionidae: Cryptorhynchinae). (Cryptorhynchinae–Studie 4.) Entomologische Blätter 95, 175–203.
Stüben P. E., Behne L.
(1998) Revision der Acalles krueperi-Gruppe mit Beschreibung der Gattung Dichromacalles g. n. und der Untergattung Balcanacalles subg. n. (Coleoptera, Curculionidae, Cryptorhynchinae). (Cryptorhynchinae–Studie 1.) Entomologische Blätter 94,
Stüben P. E., Wolf I.
(1998) Der Artstatus von Acalles provincialis Hoffmann aus den Meeralpen. Nachrichtenblatt der Bayerischen Entomologen 48, 36–44.
Wägele J. W., Mayer C.
(2007) Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evolutionary Biology 7, 147.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wink M.,
Mikes Z., Rheinheimer J.
(1997) Phylogenetic relationships in weevils (Coleoptera: Curculionoidea) inferred from nucleotide sequences of mitochondrial 16S rDNA. Naturwissenschaften 84, 318–321.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Yoder A. D.,
Irwin J. A., Payseur B. A.
(2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Systematic Biology 50, 408–424.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |