Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A molecular systematic overview of wolf spiders associated with Great Artesian Basin springs in South Australia: evolutionary affinities and an assessment of metapopulation structure in two species

Travis B. Gotch A B , Mark Adams C D , Nick P. Murphy A and Andrew D. Austin A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Evolutionary Biology & Biodiversity, School of Earth & Environmental Science, The University of Adelaide, South Australia 5005, Australia.

B Present address: South Australian Arid Lands Natural Resource Management Board, State and Local Government Offices, Roxby Downs, South Australia 5725, Australia.

C Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia.

D Corresponding author. Email: adams.mark@saugov.sa.gov.au

Invertebrate Systematics 22(2) 151-165 https://doi.org/10.1071/IS07045
Submitted: 24 August 2007  Accepted: 4 April 2008   Published: 12 May 2008

Abstract

The molecular genetic techniques of allozyme electrophoresis and mitochondrial DNA sequencing were used to examine species boundaries, phylogenetic affinities, and population structure in wolf spiders associated with artesian springs of the Great Artesian Basin (GAB) in South Australia. These springs contain the only permanent water in this extremely arid region, and consequently are of great biological, economic, and sociological significance. Molecular diagnoses of species boundaries in nine lycosid species, involving 56 individuals genotyped at 37 putative allozyme loci and 21 individuals sequenced for a ~600-bp portion of nicotinamide adenine dinucleotide dehydrogenase 1 (NADH1), were largely concordant with those recently proposed on morphological criteria. They also identified a species not previously collected, and suggested that GAB and mesic forms of Venatrix arenaris (Hogg) may not be conspecific. As well as insights into the evolutionary relationships among species and genera, phylogenetic analysis demonstrated two distinct GAB lineages within Venatrix Roewer and Hogna Simon. Population structure analyses of the two most widespread species revealed contrasting patterns. For V. fontis Framenau & Vink, allozyme analyses of 300 individuals at 15 polymorphic loci plus NADH1 sequence analysis of 72 individuals revealed the presence of distinctive subpopulations at most sites, and a partial correlation with overall geographic proximity. In contrast, allozyme analysis of 191 V. arenaris specimens at 12 polymorphic loci demonstrated a comparative lack of both within-site variability and between-site differentiation in the GAB metapopulation.


Acknowledgements

We thank Bruce Gotch, Paul Fitzpatrick, Tom Cambell and Darryl Fitzgerald for assistance in the field and Terry Reardon for technical support. We also wish to thank the pastoralists and other residents in and around the Oodnadatta track, in particular the Crozier, Sims, Williams and Greenfield families, Pete and Bev White, and Adam and Lynnie Plate. We appreciate the input and assistance shown by the traditional owners of the GAB spring country and the access given to enable us to undertake our work, in particular Reg and Ronnie Dodd, Dean and Marilyn AhChee, Uncle Harry, Brownie Doolan and Binchy Lowe. Significant support was provided by Geoff Axford (DEH) and Darren Niejalke and Kelli-Jo Kovac from BHP Billiton all of which was greatly appreciated. This work was part-funded by the Collex Flinders-Baudin Scholarship, BHP Billiton, the DEH Wildlife Fund, the University of Adelaide, and an Australian Research Council Linkage Grant (LP0669062).


References


Adams M., Baverstock P. R., Watts C. H. S., Reardon T. (1987) Electrophoretic resolution of species boundaries in Australian Microchiroptera. I. Eptesicus (Chiroptera, Vespertilionidae). Australian Journal of Biological Sciences 40, 143–162. [Accessed 15 August 2007].

Colgan D. J., Ponder W. F. (2000) Incipient speciation in aquatic snails in an arid-zone spring complex. Biological Journal of the Linnean Society 71, 625–641. open url image1

Colgan D. J., Ponder W. F., Da Costa P. (2006) Mitochondrial DNA variation in an endemic aquatic snail genus, Caldicochlea (Hydrobiidae; Caenogastropoda) in Dalhousie Springs, an Australian arid-zone spring complex. Molluscan Research 26, 8–18. open url image1

Conner J. K., and Hartl D. L. (2004). ‘A Primer of Ecological Genetics.’ (Sinauer Associates: Sunderland, MA, USA.)

De Deckker P. (1979) Ostracods from the mound springs area between Strangways and Curdimurka, South Australia. Transactions of the Royal Society of South Australia 103, 155–168. open url image1

Donnellan S., Adams M., Hutchinson M., and Baverstock P. R. (1993). The identification of cryptic species in the Australian herpetofauna: a high research priority. In ‘Herpetology in Australia: a Diverse Discipline’. (Eds D. Lunney and D. Ayers.) pp. 121–125. (Royal Zoological Society of NSW: Sydney, Australia.)

Felsenstein J. (1993). PHYLIP (Phylogeny Inference Package) version 3.6c. Distributed by the author. Department of Genetics, University of Washington: Seattle, WA, USA.

Fensham R. J., Fairfax R. J., and Ponder W. F. (2005). ‘Recovery Plan for “The Community of Native Species Dependent on Natural Discharge of Groundwater from the Great Artesian Basin”. 2006–2010. Draft Report for Stakeholder Comment’. (Australian Government: Canberra, Australia.)

Foelix R. F. (1996). ‘Biology of Spiders.’ (Oxford University Press: New York, USA.)

Framenau V. W. (2006) The wolf spider genus Venatrix Roewer in Australia: new species, synonymies and generic transfers (Araneae, Lycosidae). Records of the Western Australian Museum 23, 145–166. open url image1

Framenau V. W., Gotch T. B., Austin A. D. (2006) The wolf spiders of artesian springs in arid South Australia, with a revalidation of Tetralycosa (Araneae, Lycosidae). The Journal of Arachnology 34, 1–36.
Crossref | GoogleScholarGoogle Scholar | open url image1

Frankham R. (1996) Relationship of genetic variation to population size in wildlife. Conservation Biology 10, 1500–1508.
Crossref | GoogleScholarGoogle Scholar | open url image1

Funk D. J., Omland K. E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 34, 397–423.
Crossref | GoogleScholarGoogle Scholar | open url image1

Futuyma D. J. (2005). ‘Evolution.’ (Sinauer Associates: Sunderland, MA, USA.)

Gotch T. B. (2000). Wolf Spider Assemblages in the Mound Springs and Bore Drains of South Australia. B. E. M. (Honours) Thesis, University of Adelaide, Australia.

Gotch T. B. (2007a). ‘Great Artesian Basin Springs threat assessment report for South Australia’. (South Australian Arid Lands Natural Resource Management Board: Adelaide, Australia.)

Gotch T. B. (2007b). ‘Spatial Distribution of South Australia’s GAB Springs. Interim Report’. (South Australian Arid Lands Natural Resource Management Board: Adelaide, Australia.)

Goudet J. (1999). FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.8). Updated from Goudet, J. (1995). FSTAT (vers. 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.

Greenslade P. (1985). Terrestrial invertebrates of the mound spring bores, creek beds and other habitats. In ‘South Australia’s Mound Springs’. (Eds J. Greenslade, L. Joseph and A. Reeves.) pp. 64–77. (Nature Conservation Society of South Australia Inc.:Adelaide, Australia.)

Greenslade J., Joseph L., and Reeves A. (Eds) (1985). ‘South Australia’s Mound Springs.’ (Nature Conservation Society SA Inc.:Adelaide, Australia.)

Habermehl M. A. (1980) The Great Artesian Basin, Australia. BMR Journal of Australian Geology and Geophysics 5, 9–38. open url image1

Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98. open url image1

Harvey M. S. (2002) Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hedin M. C. (1997) Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution 14, 309–324.
PubMed |
open url image1

Highton R. (1995) Speciation in eastern North American salamanders of the genus Plethodon. Annual Review of Ecology and Systematics 26, 579–600.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hudson P., Adams M. (1996) Allozyme characterisation of the salt lake spiders (Lycosa, Lycosidae, Araneae) of southern Australia – systematic and population genetic implications. Australian Journal of Zoology 44, 535–567.
Crossref | GoogleScholarGoogle Scholar | open url image1

Huelsenbeck J. P., Ronquist F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hughes J., Vogler A. P. (2004) The phylogeny of acorn weevils (genus Curculio) from mitochondrial and nuclear DNA sequences: the problem of incomplete data. Molecular Phylogenetics and Evolution 32, 601–615.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kinhill Stearns (1984). ‘Olympic Dam Project Supplementary Environmental Studies: Mound Springs.’ (Roxby Management Services Pty Ltd: Adelaide, Australia.)

Knowlton N. (1993) Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kodric-Brown A., Brown J. H. (1993) Highly structured fish communities in Australian desert springs. Ecology 74, 1847–1855.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krieg G. W. (1989). Geology. In ‘Natural History of Dalhousie Springs’. (Eds W. Zeidler and W. F. Ponder.) pp. 19–26. (South Australian Museum: Adelaide, Australia.)

Lamb K. J. (1998). ‘Cattle Grazing Impacts on Mound Spring Spider Communities (Arachnida: Araneae).’ B. Sc. (Honours) Thesis, Flinders University, Adelaide, Australia.

Mitchell B. D. (1985). Limnology of mound springs and temporary pools, south and west of Lake Eyre. In ‘South Australia’s Mound Springs’. (Eds J. Greenslade, L. Joseph and A. Reeves.) pp. 51–63. (Nature Conservation Society SA Inc.:Adelaide, Australia.)

Murphy N. P., Framenau V. W., Donnellan S. C., Harvey M. S., Park Y.-C., Austin A. D. (2006) Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior. Molecular Phylogenetics and Evolution 38, 583–602.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Murphy N. P., Carey D., Castro L., Dowton M., Austin A. (2007) Phylogeny of the platygastroid wasps (Hymenoptera) based on sequences from the 18S rRNA, 28S rRNA and CO1 genes: implications for classification and the evolution of host relationships. Biological Journal of the Linnean Society 91, 653–669.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.
PubMed |
open url image1

Noble J. C., Habermeh M. A., James C. D., Landsberg J., Langston A. C., Morton S. R. (1998) Biodiversity implications of water management in the Great Artesian Basin. The Rangeland Journal 20, 275–300.
Crossref | GoogleScholarGoogle Scholar | open url image1

O’Meally D., Colgan D. J. (2005) Genetic ranking for biological conservation using information from multiple species. Biological Conservation 122, 395–407.
Crossref | GoogleScholarGoogle Scholar | open url image1

Page R. D. M. (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357–358.
PubMed |
open url image1

Park Y. C., Yoo J.-S., Schwarz M. P., Murphy N., Kim J.-P. (2007) Molecular phylogeny of east Asian wolf spiders (Araneae: Lycosidae) inferred from mitochondrial 12S ribosomal DNA. Annals of the Entomological Society of America 100, 1–8.
Crossref | GoogleScholarGoogle Scholar | open url image1

Perez K. E., Ponder W. F., Colgan D. J., Clark S. A., Lydeard C. (2005) Molecular phylogeny and biogeography of spring-associated hydrobiid snails of the Great Artesian Basin, Australia. Molecular Phylogenetics and Evolution 34, 545–556.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ponder W. F. (2003) Endemic aquatic macroinvertebrates of artesian springs of the Great Artesian Basin - progress and future directions. Records of the South Australian Museum Monograph Series 7, 101–110. open url image1

Ponder W. F., Colgan D. J. (2002) What makes a narrow-range taxon? Insights from Australian freshwater snails. Invertebrate Systematics 16, 571–582.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ponder W. F., Hershler R., Jenkins B. (1989) An endemic radiation of hydrobiid snails from artesian springs in northern South Australia: their taxonomy, physiology, distribution and anatomy. Malacologia 31, 1–140. open url image1

Ponder W. F., Eggler P., Colgan D. J. (1995) Genetic differentiation of aquatic snails (Gastropoda: Hydrobiidae) from artesian springs in arid Australia. Biological Journal of the Linnean Society 56, 553–596. open url image1

Ponder W. F., Colgan D. J., Terzis T., Clark S. A., Miller A. C. (1996) Three new morphologically and genetically determined species of hydrobiid gastropods from Dalhousie Springs, northern South Australia, with the description of a new genus. Molluscan Research 17, 49–109. open url image1

Raymond M., and Rousset F. (2000). GENEPOP (version 3.2): March 2000. Updated from Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Richardson B. J., Baverstock P. R., and Adams M. A. (1986). ‘Allozyme Electrophoresis: a Handbook for Animal Systematics and Population Studies.’ (Academic Press: Sydney, Australia.)

Vink C. J., Mitchell A. D., Paterson A. M. (2002) A preliminary molecular analysis of phylogenetic relationships of Australasian wolf spider genera (Araneae, Lycosidae). The Journal of Arachnology 30, 227–237.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wager R., and Unmack P. J. (2000). ‘Fishes of the Lake Eyre Catchment of Central Australia.’ (Queensland Department of Primary Industries: Brisbane, Australia.)

Yeates D. K., Harvey M. S., Austin A. D. (2003) New estimates for terrestrial arthropod species-richness in Australia. Records of the South Australian Museum Monograph Series 7, 231–241. open url image1