Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae : Dysderidae) in the Canary Islands

Miquel A. Arnedo A D , Pedro Oromí B , Cesc Múrria C , Nuria Macías-Hernández A B and Carles Ribera A
+ Author Affiliations
- Author Affiliations

A Departament de Biologia Animal, Universitat de Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain.

B Departamento de Biología Animal, Universidad de La Laguna, Tenerife, Islas Canarias, Spain.

C Departament d’Ecologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028, Barcelona, Spain.

D Corresponding author. Email: marnedo@ub.edu

Invertebrate Systematics 21(6) 623-660 https://doi.org/10.1071/IS07015
Submitted: 24 April 2007  Accepted: 22 October 2007   Published: 18 December 2007

Abstract

The spider genus Dysdera Latreille is an excellent model for the study of the evolution of cave life: ten species are known to exist exclusively in the subterranean environment of the Canary Islands, where the genus has undergone local diversification. In the present paper, two new troglobitic species (Dysdera madai, sp. nov. and D. sibyllina, sp. nov.) and the previously unknown sex of five additional species are described and illustrated: the males of D. gollumi Ribera & Arnedo, 1994, D. hernandezi Arnedo & Ribera, 1999 and D. labradaensis Wunderlich, 1991; and the females of D. andamanae Arnedo & Ribera, 1997 and D. gibbifera Wunderlich, 1991. The first direct evidence of troglobitic members of Dysdera in micro- and mesocaverns are reported. The evolution of cave life as hypothesised following a combined morphological and molecular phylogeny is investigated. Troglobitic Canarian Dysdera species have colonised the underground on eight independent occasions. The Dysderidae groundplan represents a preadaptation to cave life and has facilitated the colonisation of caves. Canarian members of Dysdera have a predominantly parapatric mode of speciation, although postspeciation changes in distribution may have obscured allopatric processes. Eye regression and, to a lesser extent, larger body size and appendage elongation characterise troglobitic species. The different levels of troglobiomorphism are interpreted as local adaptations to heterogeneous subterranean conditions. The high levels of sympatry among troglobites are explained by trophic segregation and changes in prey capture strategy were involved in the single identified case of subterranean speciation in the group.


Acknowledgements

We wish to thank Manuel Arechavaleta, Eduardo Muñoz, Nieves Zurita, Heriberto López, Salvador de la Cruz, Helena Morales and Antonio J. Pérez, who collected many of the specimens included in the present study, and Rafael García who provided additional specimens. The paper deeply benefited from patient explanations and insightful discussions with Frank Howarth. We are in debt to Laure Desutter-Grandcolas, whose comments and suggestions on an early draft of the manuscript greatly helped to improve the final version. Gustavo Hormiga kindly provided access to the SEM facility at George Washington University. The Cabildos (local authorities) in Tenerife, La Palma and El Hierro granted collecting permits, and the latter two provided logistic facilities. MA was supported by the Ramón y Cajal Programme funded by the Spanish Ministry of Education and Science and the European Regional Development Fund, and NM was supported by a graduate grant from the Autonomous Government of the Canary Islands. This project was funded by the Spanish Ministry of Education and Science grants PB97–0937 (CR&PO) and BOS2003–05876 (MA&PO) and additional financial support was provided through project 2005SGR00045 of the Autonomous Government of Catalonia. Part of the fieldwork was supported by a LIFE-Nature project on the conservation of cave fauna, co-sponsored by the Consejería de Medio Ambiente (Environmental Department) of the Canarian Autonomous Government, and project P1042004/047 also of the the Canarian Autonomous Government.


References


Akaike H. (1973). Information theory as an extension of the maximum likelihood principle. In ‘Second International Symposium on Information Theory’. (Eds B. N. Petrov and F. Csaki.) pp. 1–434. (Akademiai Kiado: Budapest, Hungary.)

Allegrucci G., Todisco V., Sbordoni V. (2005) Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by mitochondrial DNA. Molecular Phylogenetics and Evolution 37, 153–164.
Crossref | GoogleScholarGoogle Scholar | PubMed | [Verified 30 November 2007]

Gould S. J., Vrba E. S. (1982) Exaptation- a missing term in the science of form. Palaeobiology 8, 4–15. open url image1

Grandcolas P. (1997). ‘The Origin of Biodiversity in Insects: Phylogenetic Tests of Evolutionary Scenarios.’ (Muséum national d’Histoire naturelle: Paris, France.)

Guillou H., Carracedo J. C., Torrado F. P., Badiola E. R. (1996) K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research 73, 141–155.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hall T. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series 41, 95–98. open url image1

Hedin M. C. (1997a) Molecular phylogenetics at the population/species interface in cave spiders of the Southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution 14, 309–324.
PubMed |
open url image1

Hedin M. C. (1997b) Speciational history in a Diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): Inferences from geographic-based sampling. Evolution 51, 1929–1945.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hoch H., Howarth F. G. (1999) Multiple cave invasion by the species of the cixiid planthopper Oliarus in Hawaii. Zoological Journal of the Linnean Society 127, 453–475.
Crossref | GoogleScholarGoogle Scholar | open url image1

Holsinger J. R. (1988) Troglobites: the evolution of cave-dwelling organisms. American Scientist 76, 146–153. open url image1

Hopkin S. P., Martin M. H. (1985) Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice. Bulletin of Environmental Contamination and Toxicology 34, 183–187.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Howarth F. G. (1972) Cavernicoles in lava tubes on the island of Hawaii. Science 175, 325–326.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Howarth F. G. (1973) The cavernicolous fauna of Hawaiian lava tubes, 1. Introduction. Pacific Insects 15, 139–151. open url image1

Howarth F. G. (1981). Community structure and niche differentiation in Hawaiian lava tubes. In ‘Island Ecosystems; Biological Organization in Selected Hawaiian Communities’. (Eds D. Mueller-Dombois, K. W. Bridges and H. L. Carson.) pp.318–336. (Academic Press: New York, USA.)

Howarth F. G. (1983) Ecology of cave arthropods. Annual Review of Entomology 28, 365–389.
Crossref | GoogleScholarGoogle Scholar | open url image1

Howarth F. G. (1986). The tropical cave environment and the evolution of troglobites. In ‘Proceedings of the 9th International Congress of Speleology’. pp. 153–155. (Barcelona, Spain.)

Howarth F. G. (1987) The evolution of non-relictual tropical troglobites. International Journal of Speleology 16, 1–16. open url image1

Howarth F. G. (1991). Hawaiian cave faunas: Macroevolution on young islands. In ‘The Unity of Evolutionary Biology’. (Ed. E. C. Dudley.) pp. 285–295. (Dioscorides Press: Portland, OR, USA.)

Howarth F. G. (1993) High stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. American Naturalist 142, 565–577. open url image1

Howarth F. G., and Hoch H. (2005). Adaptive shifts. In ‘Encyclopedia of Caves’. (Eds D. C. Culver and W. B. White.) pp. 17–24. (Academic Press: Boston, MA, USA.)

Izquierdo I. (1997). ‘Estrategias adaptativas al medio subterraneo de las especies del genero Loboptera Brunner W. (Blattaria, Blattellidae) en las Islas Canarias.’ (Universidad de La Laguna: La Tenerife, Spain.)

Jarrige J. (1957) Coleopteres Brachelytra de l’ile de la Reunion. Memoires Institut Sciences Madagascar. Serie E 8, 103–118. open url image1

Juberthie C. (1984) La colonisation du mileu souterrain; théories et méthodes, relations avec la spéciation et l’evolution souterraine. Memoires de Biospeologie 11, 65–102. open url image1

Kane T., and Culver D. C. (1992). Biological processes in space and time: analysis of adaptation. In ‘The Natural History of Biospeleology’. (Ed. A. I. Camacho.) pp. 377–400. (Museo Nacional de Ciencias Naturales (CSIC): Madrid, Spain.)

Kumar S., Tamura K., Nei M. (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150–163.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kuntner M., Sket B., Blejec A. (1999) A comparison of the respiratory systems in some cave and surface species of spiders (Araneae, Dysderidae). The Journal of Arachnology 27, 142–148. open url image1

Legendre P., and Legendre L. (1998). ‘Numerical Ecology.’ (Elsevier B. V.: Amsterdam, The Netherlands.)

Leleup N., and Leleup J. (1968). ‘Mission zoologique belge aux ãiles Galapagos et en Ecuador.’ (Musâee Royal de l’Afrique Centrale; Institut royal des sciences naturelles de Belgique: Tervuren, Bruxelles, Belgium.)

Leys R., Watts C. H., Cooper S. J., Humphreys W. F. (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
PubMed |
open url image1

Losos J. B., Jackman T. R., Larson A., De Queiroz K., Rodriguez Schettino L. (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Martín J. L. (1991). ‘Fauna invertebrada del Parque Nacional de Timanfaya (Lanzarote, Islas Canarias).’ (Servicio de publicaciones de la Caja General de Ahorros de Canarias: Santa Cruz de Tenerife, Spain.)

Martín J. L. (1992). ‘Caracterización ecológica y evolución de las comunidades subterráneas en las islas de Tenerife, el Hierro y La Palma.’ (Universidad de La Laguna: La Laguna, Spain.)

Martín J. L., Oromí P. (1986) An ecological study of Cueva de los Roques lava tube (Tenerife, Canary Islands). Journal of Natural History 20, 375–388.
Crossref | GoogleScholarGoogle Scholar | open url image1

Medina A. L. (1991). El medio subterráeneo superficial en las Islas Canarias: Caracterización y consideraciones sobre su fauna. Ph.D. Thesis, Universidad de La Laguna, Tenerife, Spain.

Miller J. A. (2005) Cave adaptation in the spider genus Anthrobia (Araneae, Linyphiidae, Erigoninae). Zoologica Scripta 34, 565–592.
Crossref | GoogleScholarGoogle Scholar | open url image1

Miller J. S., Wenzel J. W. (1995) Ecological characters and phylogeny. Annual Review of Entomology 40, 389–415.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moulds T. A., Murphy N., Adams M., Reardon T., Harvey M. S., Jennings J., Austin A. D. (2007) Phylogeography of cave pseudoscorpions in southern Australia. Journal of Biogeography 34, 951–962..
Crossref |
open url image1

Nixon K. C. (2002). WinClada. (Published by the Author: New York, USA.) Available at www.cladistics.com [Verified 30 November 2007]

Oromí P. (2004). Canary Islands: Biospeleology. In ‘Encyclopedia of caves and karst science’. (Ed. J. Gunn.) pp. 179–181. (Fitzroy Dearborn: New York, USA.)

Oromí P., and Izquierdo I. (1994). The Canary Islands: Underground environment and adapted fauna. In ‘Encyclopaedia Biospeleologica’. (Eds C. Juberthie and V. Decu.) pp. 631–639. (Société Internationale de Biospéologie: Moulis, France.)

Oromí P., Martín J. L., Medina A. L., and Izquierdo I. (1991). The evolution of the hypogean fauna in the Canary Islands. In ‘The Unity of Evolutionary Biology’. (Ed. E. C. Dudley.) pp. 380–395. (Dioscorides Press: Portland, OR, USA.)

Peck S. B. (1975) The invertebrate fauna of tropical American caves, Part III: Jamaica, an introduction. International Journal of Speleology 7, 303–326. open url image1

Peck S. B. (1990) Eyeless arthropods of the Galapagos Islands, Ecuador: Composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago. Biotropica 22, 366–381.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peck S. B., Finston T. L. (1993) Galapagos islands, troglobites: the questions of tropical toglobites, parapatric distribution with eyed-sister-species, and the origin of parapatric speciation. Memoires de Biospeologie 20, 19–37. open url image1

Petit-Maire N., Delibrias G., Meco J., Pomel S., Rosso J. C. (1986) Paleoclimatologie des Canarie Orientales (Fuerteventura). Comptes Rendues Academie Sciences Paris, t. 303, Serie II 13, 1241–1246. open url image1

Platnick N. I. (2006). The world spider catalog. (American Museum of Natural History: New York.) Available at http://research.amnh.org/entomology/spiders/catalog81-87/INTRO1.html [Verified 30 November 2007]

Pollard S. D. (1986) Prey capture in Dysdera crocata (Araneae: Dysderidae), a long fanged spider. New Zealand Journal of Zoology 13, 149–150. open url image1

Pollard S. D., Jackson R. R., Van Olphen A., Robertson M. W. (1995) Does Dysdera crocata (Araneae Dysderidae) prefer woodlice as prey? Ethology Ecology and Evolution 7, 271–275. open url image1

Pons J., Vogler A. (2006) Size, frequency, and phylogenetic signal of multiple-residue indels in sequence alignment introns. Cladistics 22, 144–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Posada D., Buckley T. R. (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Posada D., Crandall K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Crossref | PubMed |
open url image1

Poulson T. L. (1981). Variations in life history of linyphiid cave spiders. In ‘Eighth International Congress of Speleology, Bowling Green, Kentucky’. (Ed. B. F. Beck.) pp. 60–62. (National Speleological Society: Bowling Green, KY, USA.)

Racovitza E. G. (1907). Essai sur les problemes biospeologiques. Archives Zoologie Experimentale et Generale (Biospeologica I) 43(6), 371–488.

Rambaut A., and Drummond A. J. (2003). TRACER. Available at http://tree.bio.ed.ac.uk/software/tracer [Verified 30 November 2007]

Reddell J. R. (1977). preliminary survey of the caves of the Yucatan Peninsula. In ‘Studies of the Caves and Cave Fauna of the Yucatan Peninsula’. (Ed. J. R. Reddell.) pp. 215–296. (The Speleo. Press: Austin, TX, USA.)

Ribera C., and Juberthie C. (1994). Araneae. In ‘Encyclopaedia Biospeologica.’ (Ed. C. Juberthie.) pp. 197–214. (Société Internationale de Biospéologie: Moulis, France.)

Rivera M. A., Howarth F. G., Taiti S., Roderick G. K. (2002) Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Molecular Phylogenetics and Evolution 25, 1–9.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rognon P., Coude-Gaussen G., Le Costumer M. N., Balouet J. C., Ochietti S. (1989) Le massif dunaire de Jandia (Fuerteventura, Canaries): evolution des paleoenvironments de 20.000 BP a l’actuel. Bulletin de l’Association francaise pour l’Etude du Quaternaire 1, 31–37. open url image1

Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | PubMed |
open url image1

Rovner J. S. (1986) Nests of terrestrial spiders maintain a physical gill flooding and the evolution of silk constructions. The Journal of Arachnology 14, 327–338. open url image1

Sanger F., Nicklen S., Coulsen A. R. (1977) DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 5463–5468.
Crossref | PubMed |
open url image1

Sarthein M., and Koopman B. (1980). Late Quaternary deep-sea record on northwest African dust supply and wind circulation. In ‘Palaeoecology of Africa and the Surrounding Islands’. (Eds E. M. van Zinderen Bakker, Sr. and J. A. Coetzee.) pp. 239–253. (A. A. Balkema: Rotterdam, Germany.)

Sarthein M., Tetzlaff G., Koopmann B., Wolter K., Pflaumann U. (1981) Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-west Africa. Nature 293, 193–196.
Crossref |
open url image1

Sbordoni V. (1982). Advances in speciation of cave animals. In ‘Mechanism of Speciation’. (Ed. C. Bigozzi.) pp. 219–240. (A.R. Liss: New York, USA.)

Sbordoni V., Allegrucci G., and Cesaroni D. (2000). Population genetic structure, speciation and evolutionary rates in cave-dwelling organisms. In ‘Ecosystems of the World’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 453–477. (Elsevier: Amsterdam, The Netherlands.)

Schilthuizen M., Cabanban A. S., Haase M. (2005) Possible speciation with gene flow in tropical cave snails. Journal of Zoological Systematics and Evolutionary Research 43, 133–138.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schiner J. R. (1854). Fauna der Adelsberger-, Lueger- und Magdalenen-Grotte. In ‘Die Grotten und Höhlen von Adelsberg, Lueg, Planina und Laas’. (Ed. A. Schmidl.) pp. 231–172. (Braunmülkler: Wien, Germany.)

Schluter D. (2000). ‘The Ecology of Adaptive Radiation.’ (Oxford University Press: Oxford, UK.)

Simmons M. P., Ochoterena H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Simmons M. P., Ochoterena H., Carr T. G. (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Systematic Biology 50, 454–462.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701. open url image1

Sorenson M. D. (1999). ‘TreeRot ver. 2.’ (Boston University: Boston, MA, USA.) Available at http://people.bu.edu/msoren/TreeRot.html [Verified 5 December 2007]

Strecker U., Bernatchez L., Wilkens H. (2003) Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Molecular Ecology 12, 699–710.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Swofford D. (2001). ‘PAUP Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.’ (Sinauer Associated: Sunderland, MA, USA.)

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Trajano E. (1995) Evolution of tropical troglobites: applicability of the model of quaternary climatic fluctuations. Memoires de Biospeologie 22, 203–210. open url image1

Wheeler W. C., Hayashi C. Y. (1998) The phylogeny of the extant chelicerate orders. Cladistics 14, 173–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wiens J. J., Chippindale P. T., Hillis D. M. (2003) When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. Systematic Biology 52, 501–514.
PubMed |
open url image1

Wilkens H., Hüppop K. (1986) Sympatric speciation in cave fishes? Studies on a mixed population of epi- and hypogean Astyanax (Characidae, Pisces). Zeitschrift fuer Zoologische Systematik und Evolutionsforschung 24, 223–230. open url image1

Wunderlich J. (1991) Die Spinnen-fauna der Makaronesischen Inseln. Beiträge zur Araneologie 1, 1–619. open url image1

Young N. D., Healy J. (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4, 6.
Crossref | PubMed |
open url image1










Appendix 1.  Species included in the cladistic analysis and GenBank accession numbers for the cox1 and rrnL gene sequences
All accession numbers starting with EU are new sequences obtained in the present study
Click to zoom


Appendix 1a. (continued)
Click to zoom



Appendix 2.  Clade support values for parsimony and Bayesian inference analyses
Clade numbers as in Fig. 2. Only parsimony bootstrap support values above 50% are reported. Total (BS) and partition (morphology, cox1, rrnL and gaps) Bremer supports for each gene and genome partition. ns, contradicted (clade did not appear in that analysis)
Click to zoom