Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera : Apidae : Bombus) with insights into gene utility for lower-level analysis
Heather M. Hines A C , Sydney A. Cameron A and Paul H. Williams BA Department of Entomology, 320 Morrill Hall, 505 South Goodwin Ave., University of Illinois, Urbana, IL 61801, USA.
B Department of Entomology, The Natural History Museum, London SW7 5BD, United Kingdom.
C Corresponding author. Email: hhines@life.uiuc.edu
Invertebrate Systematics 20(3) 289-303 https://doi.org/10.1071/IS05028
Submitted: 30 June 2005 Accepted: 15 February 2006 Published: 20 June 2006
Abstract
Comprising nearly 20% of all bumble bees, the subgenus Pyrobombus is distributed across diverse habitats in the Northern Hemisphere and exhibits considerable morphological and behavioural variation relative to other subgenera. Its size and variation have led to questions concerning its monophyly and intrasubgeneric relationships, but too few known morphological synapomorphies and insufficient taxon sampling have precluded robust answers to these questions. To obtain a robust phylogeny of the group, we obtained DNA sequences for 36 of the 43 species from four genes (mitochondrial 16S rRNA and three nuclear genes: elongation factor – 1α (EF-1α), long wavelength rhodopsin (LW Rh or opsin) and arginine kinase (ArgK)). Both Bayesian and parsimony phylogenies are well resolved and indicate a monophyletic Pyrobombus when assessed against representatives of 20 additional subgenera. The more conserved nuclear genes, especially EF-1α and ArgK, provided good support across all of the taxonomic levels examined, whereas support of the more rapidly evolving mt16S was restricted mostly to close relationships at the tips of the tree. The exon regions of ArgK were the most conserved and may be promising for higher-level phylogenetics. We discuss species relationships within Pyrobombus and its sister-group, Bombus s.s. + Alpinobombus, in relation to previous taxonomic studies.
Acknowledgments
Special thanks to Pierre Rasmont and Bjorn Cederberg for providing multiple specimens, identifications and guidance. We are also grateful to A. Murat Aytekin, Yvan Barbier, Pierre Rasmont, Michael Terzo, James Whitfield, Chen Xuexin and Tang Ya for providing specimens and help in the field and to the following for providing specimens: J. van Asperen de Boer, Oistein Berg, Won Young Choi, Terry Griswold, Martin Hauser, Randall Hepburn, Kevin Holston, Robin Owen, Claus Rasmussen, Adolf Scholl, Robbin Thorp, Remy Vandame and Natapot Warrit. Thanks to Alice Michel-Salzat, Andy Deans and Sudhakar Pamidighantum for technical assistance and to Kevin Johnson, Gene Robinson and James Whitfield for comments and suggestions. This project was supported by an NRI USDA grant (2002–35302–11553) to S. A. C, the H. H. Ross Memorial award and the Francis M. and Harlie M. Clark grant to H. M. H.
Ascher J. S.,
Danforth B. N., Ji S.
(2001) Phylogenetic utility of the major opsin in bees (Hymenoptera: Apoidea): a reassessment. Molecular Phylogenetics and Evolution 19, 76–93.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Baker R. H., DeSalle R.
(1997) Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology 46, 654–673.
| PubMed |
Baker R. H.,
Wilkinson G. S., DeSalle R.
(2001) Phylogenetic utility of different types of molecular data used to infer evolutionary relationships among stalk-eyed flies (Diopsidae). Systematic Biology 50, 87–105.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bremer K.
(1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42, 795–803.
| Crossref |
Brower A. V. Z., DeSalle R.
(1998) Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology 7, 73–82.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cameron S. A., Mardulyn P.
(2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera: Apinae). Systematic Biology 50, 194–214.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cameron S. A., Mardulyn P.
(2003) The major opsin gene is useful for inferring higher level phylogenetic relationships of the corbiculate bees. Molecular Phylogenetics and Evolution 28, 610–613.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cameron S. A., Williams P. H.
(2003) Phylogeny of bumble bees in the New World subgenus Fervidobombus (Hymenoptera: Apidae): congruence of molecular and morphological data. Molecular Phylogenetics and Evolution 28, 552–563.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cameron S. A.,
Derr J. N.,
Austin A. D.,
Wooley J. B., Wharton R. A.
(1992) The application of nucleotide sequence data to phylogeny of the Hymenoptera: a review. Journal of Hymenopteran Research 1, 63–79.
Chen X., Wang S.
(1997) A study on phylogenetic relationships among the subgenera of bumble bees (Hymenoptera: Apidae). Acta Entomologica Sinica 4, 325–336.
Cho S.,
Mitchell A.,
Regier J. C.,
Mitter C.,
Poole R. W.,
Friedlander T. P., Zhao S.
(1995) A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution 12, 650–656.
| PubMed |
Collier G. E.
(1990) Evolution of arginine kinase within the genus Drosophila. The Journal of Heredity 81, 177–181.
| PubMed |
Cunningham C. W.
(1997) Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14, 733–740.
| PubMed |
Danforth B. N., Ji S.
(1998) Elongation factor-1α occurs as two copies in bees: implications for phylogenetic analysis of EF-1α sequences in insects. Molecular Biology and Evolution 15, 225–235.
| PubMed |
Danforth B. N.,
Brady S. G.,
Sipes S. D., Pearson A.
(2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees. Systematic Biology 53, 309–326.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Danforth B. N.,
Sauquet H., Packer L.
(1999) Phylogeny of the bee genus Halictus (Hymenoptera: Halictidae) based on parsimony and likelihood analyses of nuclear EF-1α sequence data. Molecular Phylogenetics and Evolution 13, 605–618.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowton M., Austin A. D.
(1994) Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. Proceedings of the National Academy of Sciences of the United States of America 91, 9911–9915.
| Crossref |
PubMed |
Engel M. S.
(2001) A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History 259, 1–192.
| Crossref | GoogleScholarGoogle Scholar |
Farris J. D.,
Källersjö M.,
Kluge A. G., Bult C.
(1995) Constructing a significance test for incongruence. Systematic Biology 44, 570–572.
Franklin H. J.
(1912) The Bombidae of the New World. Transactions of the American Entomological Society 38, 177–486.
Franklin H. J.
(1954) The evolution and distribution of American bumblebee kinds. Transactions of the American Entomological Society 80, 43–51.
Friedlander T. P.,
Regier J. C., Mitter C.
(1992) Nuclear gene sequences for higher level phylogenetic analysis: 14 promising candidates. Systematic Biology 41, 483–490.
Friedlander T. P.,
Regier J. C., Mitter C.
(1994) Phylogenetic information content of five nuclear gene sequences in animals: initial assessment of character sets from concordance and divergence studies. Systematic Biology 43, 511–525.
Friedlander T. P.,
Regier J. C.,
Mitter C., Wagner D. L.
(1996) A nuclear gene for higher level phylogenetics: phosphoenolpyruvate carboxykinase tracks Mesozoic-age divergences within Lepidoptera (Insecta). Molecular Biology and Evolution 13, 594–604.
| PubMed |
Frison T. H.
(1923) Systematic and biological notes on bumblebees (Bremidae; Hymenoptera). Transactions of the American Entomological Society 48, 307–326.
Frison T. H.
(1927a) A contribution to our knowledge of the relationships of the Bremidae of America north of Mexico (Hymenoptera). Transactions of the American Entomological Society 53, 51–78.
Frison T. H.
(1927b) Records and descriptions of western bumblebees (Bremidae). Proceedings of the California Academy of Sciences 16, 365–380.
Hall T. A.
(1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
Hillis D. M., Bull J. J.
(1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
Ito M.
(1985) Supraspecific classification of bumblebees based on the characters of male genitalia. Contributions from the Institute of Low Temperature Science. Series B 20, 1–143.
de Jonghe R., Rasmont P.
(1983) Kreuzungsexperiment mit Hummeln des Genus Bombus Latreille sensu stricto (Hymenoptera, Apidae). Phegea, Antwerpen 11, 7–10.
Kawakita A.,
Sota T.,
Ascher J. S.,
Ito M.,
Tanaka H., Kato M.
(2003) Evolution and phylogenetic utility of alignment gaps within intron sequences of three nuclear genes in bumble bees (Bombus). Molecular Biology and Evolution 20, 87–92.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kawakita A.,
Sota T.,
Ito M.,
Ascher J. S.,
Tanaka H.,
Kato M., Roubik D. W.
(2004) Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Molecular Phylogenetics and Evolution 31, 799–804.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Koulianos S.
(1999) Phylogenetic relationships of the bumblebee subgenus Pyrobombus (Hymenoptera: Apidae) inferred from mitochondrial cytochrome b and cytochrome oxidase I sequences. Annals of the Entomological Society of America 92, 355–358.
Koulianos S., Schmid-Hempel P.
(2000) Phylogenetic relationships among bumble bees (Bombus, Latreille) inferred from mitochondrial cytochrome b and cytochrome oxidase I sequences. Molecular Phylogenetics and Evolution 14, 335–341.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Labougle J. M.
(1990) Bombus of México and Central America (Hymenoptera, Apidae). Kansas University Science Bulletin 54, 35–73.
Lin C., Danforth B. N.
(2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution 30, 686–702.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lutz F. E.
(1916) The geographic distribution of Bombidae (Hymenoptera), with notes on certain species of boreal America. Bulletin of the American Museum of Natural History 35, 501–521.
Mardulyn P., Cameron S. A.
(1999) The major opsin in bees (Insecta: Hymenoptera): a promising nuclear gene for higher level phylogenetics. Molecular Phylogenetics and Evolution 12, 168–176.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Medler J. T.
(1962) Morphometric studies on bumble bees. Annals of the Entomological Society of America 55, 212–218.
Michel-Salzat A., Whitfield J. B.
(2004) Preliminary evolutionary relationships within the parasitoid wasp genus Cotesia (Hymenoptera: Braconidae: Microgastrinae): combined analysis of four genes. Systematic Entomology 29, 371–382.
| Crossref | GoogleScholarGoogle Scholar |
Milliron H. E.
(1971) A monograph of the Western Hemisphere bumblebees (Hymenoptera: Apidae; Bombinae). I. The genera Bombus and Megabombus subgenus Bombias. Memoirs of the Entomological Society of Canada 82, 1–80.
Moulton J. K., Wiegmann B. M.
(2004) Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution 31, 363–378.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pamilo P.,
Varvio-Aho S., Pekkarinen A.
(1984) Genetic variation in bumblebees (Bombus, Psithyrus) and putative sibling species of Bombus lucorum. Hereditas 101, 245–251.
Pedersen B. V.
(1996) A phylogenetic analysis of cuckoo bumblebees (Psithyrus, Lepeletier) and bumblebees (Bombus, Latrielle) inferred from sequences of the mitochondrial gene cytochrome oxidase I. Molecular Phylogenetics and Evolution 5, 289–297.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pedersen B. V.
(2002) European bumblebees (Hymenoptera: Bombini) – phylogenetic relationships inferred from DNA sequences. Insect Systematics & Evolution 33, 361–386.
Pekkarinen A.
(1979) Morphometric, colour and enzyme variation in bumblebees (Hymenoptera, Apidae, Bombus) in Fennoscandia and Denmark. Acta Zoologica Fennica 158, 1–60.
Plowright R. C., Stephen W. P.
(1973) A numerical taxonomic analysis of the evolutionary relationships of Bombus and Psithyrus (Apidae: Hymenoptera). Canadian Entomologist 105, 733–743.
Posada P., Crandall K. A.
(1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rasmont P.
(1984) Les bourdons du genre Bombus Latrielle sensu stricto en Europe occidentale et centrale (Hymenoptera, Apidae). Spixiana 7, 135–160.
Rasnitsyn A. P., Michener C. D.
(1991) Miocene fossil bumble bees from the Soviet Far East with comments on the chronology and distribution of fossil bees (Hymenoptera: Apidae). Annals of the Entomological Society of America 84, 583–589.
Richards O. W.
(1968) The subgeneric division of the genus Bombus Latrielle (Hymenoptera: Apidae). Bulletin of the British Museum (Natural History). Entomology 22, 209–276.
Rokas A.,
Nylander J. A. A.,
Ronquist F., Stone G. N.
(2002) A maximum-likelihood analysis of eight phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect phylogenetic studies. Molecular Phylogenetics and Evolution 22, 206–219.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ronquist F., Huelsenbeck J. P.
(2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sakagami S. F.
(1976) Specific differences in the bionomic characters of bumblebees. A comparative review. Journal of the Faculty of Science, Hokkaido University (Zoology) 20, 390–447.
Scholl A., Obrecht E.
(1983) Enzymelektrophoretische untersuchengen zur artabgrenzung im Bombus lucorum-komplex (Apidae, Bombini). Apidologie 14, 65–78.
Scholl A.,
Obrecht E., Owen R. E.
(1990) The genetic relationships between Bombus moderatus Cresson and the Bombus lucorum auct. species complex (Hymenoptera: Apidae). Canadian Journal of Zoology 68, 2264–2268.
Scholl A.,
Thorp R. W.,
Bishop J. A., Obrecht E.
(1995) The taxonomic status of Bombus alboanalis Franklin and its relationship with other taxa of the subgenus Pyrobombus from North America and Europe (Hymenoptera: Apidae). The Pan-Pacific Entomologist 71, 113–120.
Simmons M. P., Ochoterena H.
(2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Simon C.,
Frati F.,
Beckenbach A.,
Crespi B.,
Liu H., Flook P.
(1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Sipes S. D., Wolf P. G.
(2001) Phylogenetic relationships within Diadasia, a group of specialist bees. Molecular Phylogenetics and Evolution 19, 144–156.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Spaethe J., Briscoe A. D.
(2004) Early duplication and functional diversification of the opsin gene family in insects. Molecular Biology and Evolution 21, 1583–1594.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Thorp R. W.,
Horning D. S., Dunning L. L.
(1983) Bumble bees and cuckoo bumble bees of California (Hymenoptera: Apidae). Bulletin of the California Insect Survey 23, 1–79.
Tkalců B.
(1974) Eine Hummel-Ausbeute aus dem Nepal-Himalaya (Insecta, Hymenoptera, Apoidea, Bombinae). Senckenbergiana Biologica 55, 311–349.
Tkalců B.
(1989) Neue Taxa asiatischer Hummeln (Hymenoptera, Apoidea). Acta Entomologica Bohemoslovaca 86, 39–60.
Whitfield J. B., Cameron S. A.
(1998) Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Molecular Biology and Evolution 15, 1728–1743.
| PubMed |
Williams P. H.
(1985) A preliminary cladistic investigation of relationships among the bumble bees (Hymenoptera, Apidae). Systematic Entomology 10, 239–255.
Williams P. H.
(1991) The bumble bees of the Kashmir Himalaya (Hymenoptera: Apidae, Bombini). Bulletin of the British Museum (Natural History). Entomology 60, 1–204.
Williams P. H.
(1994) Phylogenetic relationships among bumble bees (Bombus Latr.): a reappraisal of morphological evidence. Systematic Entomology 19, 327–344.
Williams P. H.
(1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of the British Museum (Natural History). Entomology 67, 79–152.
Yoshizawa K., Johnson K. P.
(2003) Phylogenetic position of Pthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12S and 16S rDNA. Molecular Phylogenetics and Evolution 29, 102–114.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zeuner F. E., Manning F. J.
(1976) A monograph on fossil bees (Hymenoptera: Apoidea). Bulletin of the British Museum (Natural History). Geology Series 27, 151–268.
Zhang J.
(1990) New fossil species of Apoidea. Acta Zootaxonomica Sinica [In Chinese, English summary.] 15, 83–91.