Register      Login
Historical Records of Australian Science Historical Records of Australian Science Society
The history of science, pure and applied, in Australia, New Zealand and the southwest Pacific
RESEARCH ARTICLE

David Mellor at the California Institute of Technology, 1937–8, the beginnings of Australian magnetochemistry

Anthony T. Baker https://orcid.org/0000-0002-6772-9942 A
+ Author Affiliations
- Author Affiliations

A Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia. Email: anthony.baker@uts.edu.au

Historical Records of Australian Science 32(1) 29-40 https://doi.org/10.1071/HR20010
Published: 14 September 2020

Abstract

David Paver Mellor (1903–80) was a physical inorganic chemist of significant influence in coordination chemistry and chemical education in Australia. He retired in 1970 after a brief appointment as dean of the Faculty of Science at the University of New South Wales, having been head of the School of Chemistry there for more than a decade. Mellor had been appointed to the staff of the University of Sydney in 1929 and was one of the first Australians to use X-ray diffraction techniques for the determination of crystal structures. In 1936 he applied for a year of leave to work with Linus Pauling at the California Institute of Technology, particularly to learn more about crystal structure analysis. On sabbatical leave he spent a period of one year across 1937–8 in California where he carried out work on X-ray diffraction in Linus Pauling’s laboratory. Two 1939 articles in Zeitschrift für Kristallographie appeared under his sole authorship as contributions from the California Institute of Technology. Perhaps more significantly, he published a 1938 Journal of the American Chemical Society paper with Charles D. Coryell on the magnetic properties of manganese(II) and cobalt(II) dipyridine chlorides. Mellor returned to Australia fired with enthusiasm for magnetochemistry. He built a magnetic balance and published many papers on the magnetic properties of coordination compounds with collaborators and students. Australian coordination chemistry has a strong tradition in magnetochemistry and that tradition started with Mellor’s work at the University of Sydney.


References

Allen, C. W. (1979) The beginnings of the Commonwealth Solar Observatory, Records of the Australian Academy of Science, 4, 27–49.
The beginnings of the Commonwealth Solar ObservatoryCrossref | GoogleScholarGoogle Scholar |

Anonymous (1929) Uni. Appointments, The Sun (Sydney), 14 June, p. 7.

Anonymous (1933) Broadcasting: Friday, July 14, The Sydney Morning Herald, 14 July, p. 5.

Anonymous (1937) News and notes, Daily Commercial News and Shipping List, 20 August, p. 4.

Anonymous (1944) Personal, The Cessnock Eagle and South Maitland Recorder, 22 February, p. 3.

Anonymous (1948a) Scientist urges world police for atom power, The Newcastle Morning Herald and Miners’ Advocate, 26 February, p. 4.

Anonymous (1948b) Police warn of danger in chemicals for crackers, The Sun (Sydney), 24 May, p. 5.

Aylward, G. H., and Findlay, T. J. V. (2008) SI Chemical Data Book, 6th edn, Milton (Australia).

Bailar, J. C., Jr. (ed.) (1956) The Chemistry of the Coordination Compounds, New York.

Baker, A. T. (1999) The Contribution of Dwyer and Lions to the design of sexadentate ligands, Journal and Proceedings of the Royal Society of New South Wales, 132, 65–82.

Baker, A. T. (2000) Presidential address: the foundation of the Sydney School of Coordination Chemistry, Journal and Proceedings of the Royal Society of New South Wales, 133, 45–60.

Baker, A. T., and Livingstone, S. E. (1985) The early history of coordination chemistry in Australia, Polyhedron, 4, 1337–1351.
The early history of coordination chemistry in AustraliaCrossref | GoogleScholarGoogle Scholar |

Baker, A. T., and Rae, I. D. (2000) More than bugs and stones: chemistry in the Royal Society of New South Wales, Historical Records of Australian Science, 13, 117–130.
More than bugs and stones: chemistry in the Royal Society of New South WalesCrossref | GoogleScholarGoogle Scholar |

Baker, N. J., Xiao, L. H., Craig, D. C., and Baker, A. T. (1999) Metal complexes of linear sexadentate ligands: Dwyer and Lions revisited, Journal and Proceedings of the Royal Society of New South Wales, 132, 11–22.

Ballhausen, C. J. (1979) Quantum mechanics and chemical bonding in inorganic complexes: II valency and inorganic metal complexes, Journal of Chemical Education, 56, 294–297.
Quantum mechanics and chemical bonding in inorganic complexes: II valency and inorganic metal complexesCrossref | GoogleScholarGoogle Scholar |

Barkworth, E. D. P., and Sugden, S. (1937) Variable magnetic moments of cobaltous compounds, Nature, 139, 374–375.
Variable magnetic moments of cobaltous compoundsCrossref | GoogleScholarGoogle Scholar |

Bethe, H. (1929) Termaufspaltung in Kristallen, Annalen der Physik, 395, 133–208.
Termaufspaltung in KristallenCrossref | GoogleScholarGoogle Scholar |

Birch, A. J. (2009) Francis Lions: a memoir and contemporary historical assessment: Sydney University chemistry, 1930s to 1960s, Historical Records of Australian Science, 20, 163–190.
Francis Lions: a memoir and contemporary historical assessment: Sydney University chemistry, 1930s to 1960sCrossref | GoogleScholarGoogle Scholar |

Burrows, G. J., and Sandford, E. P. (1936) Compounds formed from Copper Salts and Tertiary Arsines, Journal and Proceedings of the Royal Society of New South Wales, 69, 182–189.

Bygott, U. (1990) Wallace, Sir Robert Strachan (1882–1961), Australian Dictionary of Biography, 12, 366–367.

Cable, K. J., and Bygott, U. (1981) Fawsitt, Charles Edward (1878–1960), Australian Dictionary of Biography, 8, 474–475.

Coryell, C. D., Stitt, F., and Pauling, L. (1937) The magnetic properties and structure of ferrihemoglobin (methemoglobin) and some of its compounds, Journal of the American Chemical Society, 59, 633–642.
The magnetic properties and structure of ferrihemoglobin (methemoglobin) and some of its compoundsCrossref | GoogleScholarGoogle Scholar |

Cox, E. G., Shorter, A. J., Wardlaw, W., and Way, W. J. R. (1937) The stereochemistry of quadricovalent atoms: cobalt and manganese, Journal of the Chemical Society, , 1556–1559.
The stereochemistry of quadricovalent atoms: cobalt and manganeseCrossref | GoogleScholarGoogle Scholar |

Dudman, M., Gallagher, M., Goodwin, H., and McGuffin, K. (1999) The School of Chemistry, University of New South Wales, 1879–1999, Sydney.

Dunitz, J. D. (1957) The crystal structure of copper dipyridine dichloride and the violet form of cobalt dipyridine dichloride, Acta Crystallographica, 10, 307–313.
The crystal structure of copper dipyridine dichloride and the violet form of cobalt dipyridine dichlorideCrossref | GoogleScholarGoogle Scholar |

Dwyer, F. P. (1941) Chelation in metallic triazene salts, Journal of the American Chemical Society, 63, 78–81.
Chelation in metallic triazene saltsCrossref | GoogleScholarGoogle Scholar |

Dwyer, F. P., and Mellor, D. P. (1941) The diamagnetism of nickel triazene complexes, Journal of the American Chemical Society, 63, 81–83.
The diamagnetism of nickel triazene complexesCrossref | GoogleScholarGoogle Scholar |

Dwyer, F. P., and Mellor, D. P. (eds) (1964) Chelating Agents and Metal Chelates, New York.

Dwyer, F. P., Lions, F., and Mellor, D. P. (1950) Sexadentate metal complexes: II magnetic studies, Journal of the American Chemical Society, 72, 5037–5039.
Sexadentate metal complexes: II magnetic studiesCrossref | GoogleScholarGoogle Scholar |

Gill, N. S., and Nyholm, R. S. (1961) The structure of bis-pyridine metal dihalide complexes, Journal of Inorganic and Nuclear Chemistry, 18, 88–97.
The structure of bis-pyridine metal dihalide complexesCrossref | GoogleScholarGoogle Scholar |

Hammond, G. S. (1972) J. Holmes Sturdivant 1906–1972, Engineering and Science, 35, 29.

Hantzsch, A., and Schlegel, F. (1927) Solvation und Komplexbildung als Ursache des Farbenwechsels der Kobaltohaloide, Zeitschrift für anorganische chemie, 159, 273–303.
Solvation und Komplexbildung als Ursache des Farbenwechsels der KobaltohaloideCrossref | GoogleScholarGoogle Scholar |

Helmholz, L., and Kruh, R. F. (1952) The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion, Journal of the American Chemical Society, 74, 1176–1181.
The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ionCrossref | GoogleScholarGoogle Scholar |

Home, R. W. (1990) Physics in Australia to 1945, Melbourne, 1990.

Hughes, G. K., Hush, N., and Mellor, D. P. (1947) Polymerization of a semiquinone ion, Nature, 159, 612.
Polymerization of a semiquinone ionCrossref | GoogleScholarGoogle Scholar |

Hush, N. S., and Radom, L. (2017) David Parker Craig 1919–2015, Historical Records of Australian Science, 28, 159–170.
David Parker Craig 1919–2015Crossref | GoogleScholarGoogle Scholar |

Irving, H., and Williams, R. J. P. (1948) Order of stability of metal complexes, Nature, 162, 746–747.
Order of stability of metal complexesCrossref | GoogleScholarGoogle Scholar |

Kepert, D. (1995) Brian N. Figgis, Australian Journal of Chemistry, 48, 693–695.
Brian N. FiggisCrossref | GoogleScholarGoogle Scholar |

Lever, A. B. P. (1984) Inorganic Electronic Spectroscopy, 2nd edn, Amsterdam.

Lewis, J., and Wilkins, R. G. (eds) (1960) Modern Coordination Chemistry, New York.

Livingstone, S. E. (1996) Dwyer, Francis Patrick John (1910–1962), Australian Dictionary of Biography, 14, 63–64.

Livingstone, S. E. (2000a) Mellor, David Paver (1903–1980), Australian Dictionary of Biography, 15, 347–348.

Livingstone, S. E. (2000b) Nyholm, Sir Ronald Sydney (1917–1971), Australian Dictionary of Biography, 15, 504–505.

Maley, L., and Mellor, D. P. (1949a) The relative stability of internal metal complexes: I complexes of 8-hydroxyquinoline, salicylaldehyde and acetylacetone, Australian Journal of Scientific Research, Series B: Biological Sciences, 2A, 92–110.
The relative stability of internal metal complexes: I complexes of 8-hydroxyquinoline, salicylaldehyde and acetylacetoneCrossref | GoogleScholarGoogle Scholar |

Maley, L., and Mellor, D. P. (1949b) The relative stability of internal metal complexes: II metal derivatives of 8-hydroxyquinoline 5-sulphonic acid and a series of monocarboxylic mono-α-amino acids including histidine, Australian Journal of Scientific Research, Series B: Biological Sciences, 2A, 579–594.
The relative stability of internal metal complexes: II metal derivatives of 8-hydroxyquinoline 5-sulphonic acid and a series of monocarboxylic mono-α-amino acids including histidineCrossref | GoogleScholarGoogle Scholar |

Maley, L., and Mellor, D. P. (1950) Stability of some metal complexes of histidine, Nature, 165, 453.
Stability of some metal complexes of histidineCrossref | GoogleScholarGoogle Scholar |

Martell, A. E., and Calvin, M. (1952) Chemistry of the Metal Chelate Compounds, Englewood Cliffs.

Masters, A. (1995) Raymond L. Martin, Australian Journal of Chemistry, 48, 701–704.
Raymond L. MartinCrossref | GoogleScholarGoogle Scholar |

McKenzie, H. A., Mellor, D. P., Mills, J. E., and Short, L. N. (1944) Light absorption and magnetic properties of nickel complexes, Journal and Proceedings of the Royal Society of New South Wales, 78, 70–80.

McLaren, A. C., and Spink, J. A. (1993) Bowden, Frank Philip (1903–1968), Australian Dictionary of Biography, 13, 228–229.

Mellor, D. P. (1939a) The unit cell and probable space group of strontium hydroxide octahydrate, Sr(OH)2.8H2O, Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 100, 441–442.

Mellor, D. P. (1939b) The unit cell and space group of Cs2CuCl4, Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 101, 160–161.
The unit cell and space group of Cs2CuCl4Crossref | GoogleScholarGoogle Scholar |

Mellor, D. P. (1940) Significance of large bond-angle distortions in relation to the stereochemistry and magnetic properties of quadricovalent metals, Journal and Proceedings of the Royal Society of New South Wales, 74, 129–140.

Mellor, D. P. (1941) Magnetochemistry, Australian Journal of Science, 3, 71–73 and 117–121.

Mellor, D. P. (1942a) The stereochemistry of some metallic complexes, with special reference to their magnetic properties and the Cotton effect, Journal and Proceedings of the Royal Society of New South Wales, 75, 157–168.

Mellor, D. P. (1942b) Presidential address: the stereochemistry of square complexes, Journal and Proceedings of the Royal Society of New South Wales, 76, 1–46.

Mellor, D. P. (1943) The stereochemistry of square complexes, Chemical Reviews, 33, 137–183.
The stereochemistry of square complexesCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P. (1944) A study of the magnetic behaviour of complexes containing the platinum metals, Journal and Proceedings of the Royal Society of New South Wales, 77, 145–155.

Mellor, D. P. (1945) Atomic research may not be easy to limit, The Sydney Morning Herald, 16 October, p. 2.

Mellor, D. P. (1958) Australia in the War of 1939 – 1945: the Role of Science and Industry, Canberra.

Mellor, D. P. (1971) The Evolution of the Atomic Theory, Amsterdam.

Mellor, D. P. (1975) The development of coordination chemistry in Australia, Records of the Australian Academy of Science, 3, 29–40.
The development of coordination chemistry in AustraliaCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P., and Aylward, G. H. (eds) (1960) Background to Chemistry, Sydney.

Mellor, D. P., and Coryell, C. D. (1938) The magnetic properties of manganous and cobaltous dipyridine chlorides, Journal of the American Chemical Society, 60, 1786–1787.
The magnetic properties of manganous and cobaltous dipyridine chloridesCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P., and Craig, D. P. (1941a) Magnetic studies of coordination compounds: III factors affecting the nature of bonds between nickel and certain nonmetallic atoms, Journal and Proceedings of the Royal Society of New South Wales, 74, 475–494.

Mellor, D. P., and Craig, D. P. (1941b) Magnetic studies of coordination compounds: IV square-coordinated cobaltous compounds, Journal and Proceedings of the Royal Society of New South Wales, 74, 495–501.

Mellor, D. P., and Craig, D. P. (1941c) Magnetic studies of coordination compounds: V binuclear copper derivatives of diphenylmethylarsine, Journal and Proceedings of the Royal Society of New South Wales, 75, 27–30.

Mellor, D. P., and Craig, D. P. (1943) Magnetic behaviour of potassium cyanonickelite, Journal and Proceedings of the Royal Society of New South Wales, 76, 281–282.

Mellor, D. P., and Craig, D. P. (1944) A note on the nitrosyl group in metal complexes, Journal and Proceedings of the Royal Society of New South Wales, 78, 25–27.

Mellor, D. P., and Craig, D. P. (1946) A note on the magnetic behaviour of verdohaemochromogen, Journal and Proceedings of the Royal Society of New South Wales, 78, 258–259.

Mellor, D. P., and Goldacre, R. J. (1940) Magnetic studies of coordination compounds: I cobaltous compounds with special reference to their resolvability, Journal and Proceedings of the Royal Society of New South Wales, 73, 233–239.

Mellor, D. P., and Lockwood, W. H. (1940a) A magnetic study of the effect of bond-angle distortion, Nature, 145, 862.
A magnetic study of the effect of bond-angle distortionCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P., and Lockwood, W. H. (1940b) Magnetic studies of coordination compounds: II effect of distortion of valence bond angles in nickel and palladium derivatives of substituted pyrromethenes, Journal and Proceedings of the Royal Society of New South Wales, 74, 141–148.

Mellor, D. P., and Maley, L. (1947) Stability constants of internal complexes, Nature, 159, 370.
Stability constants of internal complexesCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P., and Maley, L. (1948) Order of stability of metal complexes, Nature, 161, 436–437.
Order of stability of metal complexesCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P., and Morris, B. S. (1938) Dimorphism of bispyridine cobaltous chloride, Journal and Proceedings of the Royal Society of New South Wales, 71, 536–539.

Mellor, D. P., and Quodling, F. M. (1936) Crystallographic and optical data for Cs2CuCl4, Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 95, 315.

Mellor, D. P., and Waterman, H. (1958) The magnetic properties of nitrosyl pentammine cobalt chloride, Australian Journal of Chemistry, 11, 387–388.
The magnetic properties of nitrosyl pentammine cobalt chlorideCrossref | GoogleScholarGoogle Scholar |

Mellor, D. P., and Willis, J. B. (1946) A note on the platinum derivative of a substituted pyrromethene, Journal and Proceedings of the Royal Society of New South Wales, 79, 141–142.

Mellor, D. P., Burrows, G. J., and Morris, B. S. (1938) A novel type of isomerism in a co-ordination compound of copper, Nature, 141, 414–415.
A novel type of isomerism in a co-ordination compound of copperCrossref | GoogleScholarGoogle Scholar |

Mills, J. E., and Mellor, D. P. (1942) Absorption spectra of para- and diamagnetic nickel complexes, Journal of the American Chemical Society, 64, 181–182.
Absorption spectra of para- and diamagnetic nickel complexesCrossref | GoogleScholarGoogle Scholar |

Milward, J. L., Wardlaw, W., and Way, W. J. R. (1938) The constitution of the nitrosopentammine cobalt salts, Journal of the Chemical Society, , 233–236.
The constitution of the nitrosopentammine cobalt saltsCrossref | GoogleScholarGoogle Scholar |

Morosin, B., and Lingafelter, E. C. (1961) The configuration of the tetrachlorocuprate ion, Journal of Physical Chemistry, 65, 50–51.
The configuration of the tetrachlorocuprate ionCrossref | GoogleScholarGoogle Scholar |

Nyholm, R. S. (1955) Presidential address, Journal and Proceedings of the Royal Society of New South Wales, 88, 1–29.

Nyholm, R. S. (1957) Magnetochemistry, in Chemistry of the Co-ordinate Compounds, ed. L. Cambi, London, pp. 401–422.

Nyholm, R. S. (1968) Magnetism, bonding and structure of coordination compounds, in Xth International Conference on Coordination Chemistry, Plenary Lectures, London, pp. 1–19.

Pauling, L. C. (1940) The Nature of the Chemical Bond, 2nd edn (1952 reprint), Oxford.

Pfab, W., and Nast, R. (1959) Zur Struktur des K4[Ni2(CN)6], Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 111, 259–268.
Zur Struktur des K4[Ni2(CN)6]Crossref | GoogleScholarGoogle Scholar |

Rae, I. D. (1999) They had to go: Australian chemists who took Doctor of Philosophy degrees in Britain, 1945–65, Historical Records of Australian Science, 12, 331–361.
They had to go: Australian chemists who took Doctor of Philosophy degrees in Britain, 1945–65Crossref | GoogleScholarGoogle Scholar |

Rae, I. D. (2002) False start for the PhD in Australia, Historical Records of Australian Science, 14, 129–141.
False start for the PhD in AustraliaCrossref | GoogleScholarGoogle Scholar |

Reitzenstein, F. (1894) Ueber die Einwirkung reducirender Mittel auf Metallcyanide und einige Metallsalze mit organischen Basen, Justus Liebigs Annalen der Chemie, 282, 267–280.
Ueber die Einwirkung reducirender Mittel auf Metallcyanide und einige Metallsalze mit organischen BasenCrossref | GoogleScholarGoogle Scholar |

Rickards, R. W., and Sargeson, A. M. (2000) Lions, Francis (1901–1972), Australian Dictionary of Biography, 15, 101–102.

Robertson, J. M. (1953) Organic Crystals and Molecules, Ithaca NY.

Selwood, P. W. (1943) Magnetochemistry, New York.

Smith, H. G. (1953) The crystal structure of strontium hydroxide octahydrate, Sr(OH)2.8H2O, Acta Crystallographica, 6, 604–609.
The crystal structure of strontium hydroxide octahydrate, Sr(OH)2.8H2OCrossref | GoogleScholarGoogle Scholar |

Stoner, E. C. (1934) Magnetism and Matter, London.

Stubbin, P. M., and Mellor, D. P. (1949) Magnetic properties of some tungsten bronzes, Journal and Proceedings of the Royal Society of New South Wales, 82, 225–228.

Van Vleck, J. H. (1932) The Theory of Electric and Electric Susceptibilities, Oxford, and references therein.

Willis, J. B., and Mellor, D. P. (1947) The magnetic susceptibility of some nickel complexes in solution, Journal of the American Chemical Society, 69, 1237–1240.
The magnetic susceptibility of some nickel complexes in solutionCrossref | GoogleScholarGoogle Scholar |