Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Historical Records of Australian Science Historical Records of Australian Science Society
The history of science, pure and applied, in Australia, New Zealand and the southwest Pacific
EDITORIAL

George Szekeres 1911–2005

M. G. Cowling A B , D. C. Hunt A and J. D. Steele A
+ Author Affiliations
- Author Affiliations

A School of Mathematics and Statistics, University of New South Wales, UNSW Sydney, NSW 2052, Australia.

B Corresponding author. Email: m.cowling@unsw.edu.au

Historical Records of Australian Science 30(1) 49-57 https://doi.org/10.1071/HR18012
Published: 6 December 2018

Abstract

George Szekeres was a distinguished Hungarian-Australian mathematician, who worked in many different areas of mathematics, and with many collaborators. He was born in Budapest in 1911. His youth between the two World Wars was spent in Hungary, a country that, as a result of historical events, went through a golden age and produced a great number of exceptional intellects; his early mathematical explorations were in the company of several of these. However, for family reasons, he trained as a chemist rather than a mathematician. From 1938 to 1948, he lived in Shanghai, China, another remarkable city, where he experienced the horrors of persecution and war but nevertheless managed to prove some notable mathematical results. In 1948, he moved to Australia, as a lecturer, then senior lecturer, and finally reader, at the University of Adelaide, and then in 1964 he took up the Foundation Chair of Pure Mathematics at the University of New South Wales; in Australia he was able to bring his mathematical talents to fruition. After many years in Sydney, he returned to Adelaide, where he died in 2005. We discuss his early life in Hungary, his sojourn in Shanghai, and his mature period in Australia. We also discuss some aspects of his mathematical work, which is extraordinarily broad.


References

Ahrens, R. W., and Szekeres, G. (1969) On a combinatorial generalization of 27 lines associated with a cubic surface, Journal of the Australian Mathematical Society, 10, 485–492.
On a combinatorial generalization of 27 lines associated with a cubic surfaceCrossref | GoogleScholarGoogle Scholar |

Appel, K., and Haken, W. (1977) Solution of the Four Color Map Problem, Scientific American, 237, 108–121.
Solution of the Four Color Map ProblemCrossref | GoogleScholarGoogle Scholar |

Baker, I. N. (1958) Zusammensetzungen ganzer Funktionen, Mathematische Zeitschrift, 69, 121–163.
Zusammensetzungen ganzer FunktionenCrossref | GoogleScholarGoogle Scholar |

Borchardt, C. W. (1860) Über eine Interpolationsformel für eine Art Symmetrischer Functionen und über Deren Anwendung, Mathematische Abhandlungen der königlicher Akademie der Wissenschaften zu Berlin, 1–20.

Butt, P. (2012) Who Killed Dr Bogle & Mrs Chandler? London–Chatswood, NSW.

Cayley, A. (1889) A theorem on trees, Quarterly Journal of Pure and Applied Mathematics, 23, 376–378.

Cohen, G. L. (2006) Counting Australia In. The People, Organisations and Institutions of Australian Mathematics, Sydney.

Cowling, M. G. (2005a) Obituary George and Esther Szekeres, Gazette of the Australian Mathematical Society, 32, 221–225.

Cowling, M. (2005b) Sydney Morning Herald (Sydney), 7 November, 28.

Erdős, P., and Lehner, J. (1941) The distribution of the number of summands in the partitions of a positive integer, Duke Mathematical Journal, 8, 335–345.

Erdős, P., and Szekeres, G. (1934) Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litterarum ac Scientiarum: Regiae Universitatis Hungaricae Francisco-Josephinae. Sectio Scientiarum Mathematicarum, 7, 95–102.

Erdős, P., and Szekeres, G. (1935) A combinatorial problem in geometry, Compositio Mathematica, 2, 463–470.

Erdős, P., and Szekeres, G. (1953) Problems and solutions: advanced problems: solutions 4352, The American Mathematical Monthly, 60, 717–718.
Problems and solutions: advanced problems: solutions 4352Crossref | GoogleScholarGoogle Scholar |

Erdős, P., and Szekeres, G. (1961) On some extremum problems in elementary geometry, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae: Sectio Mathematica, 3–4, 53–62.

Giles, J. R., and Seberry Wallis, J. (1976) George Szekeres: with affection and respect, Journal of the Australian Mathematical Society. Series A, 21, 385–392.
George Szekeres: with affection and respectCrossref | GoogleScholarGoogle Scholar |

Hanák, P. (1999) The Garden and the Workshop, Princeton.

Hardy, G. H., and Ramanujan, S. (1918) Asymptotic formulæ in combinatory analysis, Proceedings of the London Mathematical Society: Second Series, 17, 75–115.
Asymptotic formulæ in combinatory analysisCrossref | GoogleScholarGoogle Scholar |

Hargittai, I. (2006) The Martians of Science: Five Physicists Who Changed the Twentieth Century, New York.

Harvey, D. M. (2002) ‘George Szekeres Counts to Ninety’, in ‘AustMS Library’, https://www.austms.org.au/Jobs/Library2.html, viewed December 2017.

Hoffman, P. (1998) The Man Who Loved Only Numbers: the Story of Paul Erdős and the Search for Mathematical Truth, New York.

Kantor, W., and Szekeres, G. (1956) Cosmic time and the field equations of general relativity, Physical Review, II Series, 104, 831–834.

Kneser, H. (1949) Reelle analytische Lösungen der Gleichung φ(φ(x)) = ex und verwandter Funktionalgleichungen, Journal für die reine und angewandte Mathematik: Crelle’s Journal, 187, 56–67.

Kranzler, D. (1976) Japanese, Nazis, and Jews: the Jewish Refugee Community of Shanghai, 1938–1945, New York.

Lynch, J. T. (1985) Four forces and spinor connection in general relativity, Physical Review. D, 31, 1287–1295.
Four forces and spinor connection in general relativityCrossref | GoogleScholarGoogle Scholar |

Marton, K. (2006) The Great Escape: Nine Jews Who Fled Hitler and Changed the World, New York.

‘MATP’ (2005) Daily Telegraph (Sydney), 31 August, 38.

Morgan, J. (2005a) Advertiser (Adelaide), 31 August, 3.

Morgan, J. (2005b) Herald-Sun (Melbourne), 31 August, 4.

O’Connor, J. J., and Robertson, E. F. (2006) ‘George Szekeres’, in ‘MacTutor History of Mathematics archive’, http://www-history.mcs.st-andrews.ac.uk/Biographies/Szekeres.html, viewed October 2017.

Pan, Guang (ed) (1995) The Jews in Shanghai, Shanghai.

Ramsey, F. P. (1929) On a problem in formal logic, Proceedings of the London Mathematical Society, 30, 264–286.

Rényi, A., and Szekeres, G. (1967) On the height of trees, Journal of the Australian Mathematical Society, 7, 497–507.
On the height of treesCrossref | GoogleScholarGoogle Scholar |

Sag, T. W., and Szekeres, G. (1964) Numerical evaluation of high-dimensional integrals, Mathematics of Computation, 18, 245–253.
Numerical evaluation of high-dimensional integralsCrossref | GoogleScholarGoogle Scholar |

Schechter, B. (2000) My Brain is Open: the Mathematical Journeys of Paul Erdős, New York.

Szekeres, G. (1948a) On a certain class of metabelian groups, Annals of Mathematics. Second Series, 49, 43–52.
On a certain class of metabelian groupsCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (1948b) Countable abelian groups without torsion, Duke Mathematical Journal, 15, 293–306.
Countable abelian groups without torsionCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (1950) The asymptotic behaviour of the coefficients of certain power series, Acta Scientiarum Mathematicarum, 12, 187–198.

Szekeres, G. (1951) An asymptotic formula in the theory of partitions, The Quarterly Journal of Mathematics, Oxford: Second Series, 2, 85–108.
An asymptotic formula in the theory of partitionsCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (1953) Some asymptotic formulae in the theory of partitions: II, The Quarterly Journal of Mathematics, Oxford: Second Series, 4, 96–111.
Some asymptotic formulae in the theory of partitions: IICrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (1955) New formulation of the general theory of relativity, Physical Review, II: Series, 97, 212–223.

Szekeres, G. (1956) Ether drift and gravitational motion, Physical Review. II: Series, 104, 1791–1798.

Szekeres, G. (1957) Spinor geometry and general field theory, Journal of Mathematics and Mechanics, 6, 471–517.

Szekeres, G. (1958) Regular iteration of real and complex functions, Acta Mathematica, 100, 203–258.
Regular iteration of real and complex functionsCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (1960) On the singularities of a Riemannian manifold, Publicationes Mathematicae, 7, 285–301.

Szekeres, G. (1971) Multidimensional continued fractions, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae: Sectio Mathematica, 13, 113–140.

Szekeres, G. (1973) Polyhedral decompositions of cubic graphs, Bulletin of the Australian Mathematical Society, 8, 367–387.
Polyhedral decompositions of cubic graphsCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (1975) Cosmology with spinor connection, Computers & Mathematics with Applications, 1, 345–350.
Cosmology with spinor connectionCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (2002) On the singularities of a Riemannian manifold, General Relativity and Gravitation, 34, 2001–2016.
On the singularities of a Riemannian manifoldCrossref | GoogleScholarGoogle Scholar |

Szekeres, G. (2008) ‘Abel’s functional equation and its role in the problem of croissance régulière’ in Transcendental Dynamics and Complex Analysis: a Tribute to Noel Baker, eds. P. J. Rippon and G. M. Stallard, Cambridge, pp. 447–451.

Szekeres, G., and Guttmann, A. J. (1987) Spiral self-avoiding walks on the triangular lattice, Journal of Physics. A, Mathematical and General, 20, 481–493.
Spiral self-avoiding walks on the triangular latticeCrossref | GoogleScholarGoogle Scholar |

Szekeres, G., and Peters, L. (2006) Computer solution to the 17-point Erdős–Szekeres problem, The ANZIAM Journal, 48, 151–164.
Computer solution to the 17-point Erdős–Szekeres problemCrossref | GoogleScholarGoogle Scholar |

Szekeres, G., and Peters, L. (2008) Space-time structure and spinor geometry, The ANZIAM Journal, 50, 143–176.
Space-time structure and spinor geometryCrossref | GoogleScholarGoogle Scholar |

Szekeres, G., and Wilf, H. S. (1967) An inequality for the chromatic number of a graph, Journal of Combinatorial Theory, 4, 1–3.
An inequality for the chromatic number of a graphCrossref | GoogleScholarGoogle Scholar |

T.-Sós, V., and Laczkovich, M. (2004/2005) Emlékezés Klein Eszterre és Szekeres Győrgyre, Mathematikai Lapok, 12, 9–11.

Ulm, H. (1933) Zur Theorie der abzählbar-unendlichen Abelschen Gruppen, Mathematische Annalen, 107, 774–803.
Zur Theorie der abzählbar-unendlichen Abelschen GruppenCrossref | GoogleScholarGoogle Scholar |