Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Healthcare Infection Healthcare Infection Society
Official Journal of the Australasian College for Infection Prevention and Control
REVIEW

A review of bacterial biofilms and their role in device-associated infection

Karen Vickery A B , Honghua Hu A , Anita Simone Jacombs A , David Alan Bradshaw A and Anand Kumar Deva A
+ Author Affiliations
- Author Affiliations

A Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, North Ryde, NSW, 2109, Australia.

B Corresponding author. Email: karen.vickery@mq.edu.au

Healthcare Infection 18(2) 61-66 https://doi.org/10.1071/HI12059
Submitted: 28 November 2012  Accepted: 30 January 2013   Published: 23 April 2013

Abstract

Background: Most of the world’s bacteria live in biofilms, three-dimensional clusters attached to surfaces. Many hospital-acquired infections are associated with biofilm infections of implantable medical devices such as orthopaedic prostheses and intravascular catheters. Within biofilms, bacteria are significantly less susceptible to antibiotics and host defences, making biofilm infections difficult to diagnose and treat, and often necessitating removal of the infected implant.

Method: In this review article we describe the process of biofilm formation, quorum sensing, and biofilm infection of the healthcare environment, surgical instruments and implantable medical devices.

Conclusion: The inability to treat biofilm-infected devices means that therapies targeting biofilm-specific processes and targeting prevention of biofilm formation are required.

Additional keywords: biofilms, biomaterial-related infections, environmental contamination, implant-related infections, infection control, staphylococci, surgical infection.


References

[1]  Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common course of persistent infections. Science 1999; 284 1318–22.
Bacterial biofilms: A common course of persistent infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Squ78%3D&md5=e10419d3a1a87e53e84a5632cdb14b23CAS | 10334980PubMed |

[2]  Bryers JD. Medical biofilms. Biotechnol Bioeng 2008; 100 1–18.
Medical biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks12qtL4%3D&md5=746908ce42525298b61087134c21400bCAS | 18366134PubMed |

[3]  Donlan RM. New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res 2005; 12–9.
New approaches for the characterization of prosthetic joint biofilms.Crossref | GoogleScholarGoogle Scholar | 16056020PubMed |

[4]  Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009; 14 2535–54.
Bacterial extracellular polysaccharides involved in biofilm formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslSlt7g%3D&md5=3cac808ec2945a22f5511647b83101faCAS | 19633622PubMed |

[5]  Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005; 13 34–40.
Survival strategies of infectious biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2ntA%3D%3D&md5=13779019edd641c83c15584988109d2bCAS | 15639630PubMed |

[6]  Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15 167–93.
Biofilms: survival mechanisms of clinically relevant microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslGrurg%3D&md5=69006d78862e358364345ea4cff95692CAS | 11932229PubMed |

[7]  Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW. Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 2003; 1 667–83.
Bacterial biofilms: a diagnostic and therapeutic challenge.Crossref | GoogleScholarGoogle Scholar | 15482163PubMed |

[8]  McCann MT, Gilmore BF, Gorman SP. Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J Pharm Pharmacol 2008; 60 1551–71.
| 1:CAS:528:DC%2BD1cXhsVyqu7zN&md5=aa9e7e6a94c9b00ebd9be66a0e73007aCAS | 19000360PubMed |

[9]  Harris LG, Foster SJ, Richards RG, Lambert P, Stickler D, Eley A. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials. Eur Cell Mater 2002; 4 39–60.
| 1:CAS:528:DC%2BD3sXhs1KjsLc%3D&md5=404bb882637738bed98918ea1581b1adCAS | 14562246PubMed |

[10]  Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F. Quorum sensing in veterinary pathogens: Mechanisms, clinical importance and future perspectives. Vet Microbiol 2009; 135 187–95.
Quorum sensing in veterinary pathogens: Mechanisms, clinical importance and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3gslarsQ%3D%3D&md5=17679bcb70fe2f7245d3dee8b8fcedeaCAS | 19185433PubMed |

[11]  Hooshangi S, Bentley WE. From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 2008; 19 550–5.
From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrtLjN&md5=909b8da5d0eee3e8b56df85ed828a572CAS | 18977301PubMed |

[12]  Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick RP, et al Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA 1999; 96 1218–23.
Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFSrt74%3D&md5=b59b7f53bd40b1445faaba6c68b939cbCAS | 9990004PubMed |

[13]  Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth F, et al The agr P2 operon: An autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 1995; 248 446–58.
The agr P2 operon: An autocatalytic sensory transduction system in Staphylococcus aureus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Gns7k%3D&md5=f2fdfbabecd001c548cdb704fd4ae8eeCAS | 7565609PubMed |

[14]  Anwar H, Van Biesen T, Dasgupta M, Lam K, Costerton JW. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother 1989; 33 1824–6.
Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1yrtL4%3D&md5=06595865f40fe6b6e99dc1cb5ba82729CAS | 2511804PubMed |

[15]  Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2003; 47 1251–6.
Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVSnu74%3D&md5=6cb5c1e12c0870e653f5a214d613f532CAS | 12654654PubMed |

[16]  Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, et al Alginate overproduction affects pseudomonas aeruginosa biofilm structure and function. J Bacteriol 2001; 183 5395–401.
Alginate overproduction affects pseudomonas aeruginosa biofilm structure and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFyqtLc%3D&md5=e93a76d4dbe81c57da74047fce963be2CAS | 11514525PubMed |

[17]  Costerton JW. Introduction to biofilm. Int J Antimicrob Agents 1999; 11 217–21.
Introduction to biofilm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslGitrs%3D&md5=6d57140c64351d80d06c06239ec9e5dbCAS | 10394973PubMed |

[18]  Hota S, Hirji Z, Stockton K, Lemieux C, Dedier H, Wolfaardt G, et al Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol 2009; 30 25–33.
Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design.Crossref | GoogleScholarGoogle Scholar | 19046054PubMed |

[19]  Dancer SJ. Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 2008; 8 101–13.
Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning.Crossref | GoogleScholarGoogle Scholar | 17974481PubMed |

[20]  Carling PC, Bartley JM. Evaluating hygienic cleaning in health care settings: what you do not know can harm your patients. Am J Infect Control 2010; 38 S41–50.
Evaluating hygienic cleaning in health care settings: what you do not know can harm your patients.Crossref | GoogleScholarGoogle Scholar | 20569855PubMed |

[21]  Vickery K, Pajkos A, Cossart Y. Removal of biofilm from endoscopes: evaluation of detergent efficiency. Am J Infect Control 2004; 32 170–6.
Removal of biofilm from endoscopes: evaluation of detergent efficiency.Crossref | GoogleScholarGoogle Scholar | 15153929PubMed |

[22]  Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling 2011; 27 1017–32.
Resistance of bacterial biofilms to disinfectants: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShtLnI&md5=1c75212726baec10032acd29680e7961CAS | 22011093PubMed |

[23]  Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gosbell IB. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J Hosp Infect 2012; 80 52–5.
Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38%2FpslahtA%3D%3D&md5=6bbad6515d47d8a584abad1fc9fd1893CAS | 21899921PubMed |

[24]  Bisset L, Cossart YE, Selby W, West R, Catterson D, O’Hara K, et al A prospective study of the efficacy of routine decontamination for gastrointestinal endoscopes and the risk factors for failure. Am J Infect Control 2006; 34 274–80.
A prospective study of the efficacy of routine decontamination for gastrointestinal endoscopes and the risk factors for failure.Crossref | GoogleScholarGoogle Scholar | 16765205PubMed |

[25]  Saint S. Clinical and economic consequences of nosocomial catheter-related bacteruria. Am J Infect Control 2000; 28 68–75.
Clinical and economic consequences of nosocomial catheter-related bacteruria.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ktlCitQ%3D%3D&md5=f420a20723514297ff5fb09ac5eac05fCAS | 10679141PubMed |

[26]  Kojic EM, Darouiche RO. Candida Infections of Medical Devices. Clin Microbiol Rev 2004; 17 255–67.
Candida Infections of Medical Devices.Crossref | GoogleScholarGoogle Scholar | 15084500PubMed |

[27]  Grammatico-Guillon L, Baron S, Gettner S, Lecuyer A-I, Gaborit C, Rosset P, et al Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes. J Hosp Infect 2012; 82 40–8.
Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38jltlCisg%3D%3D&md5=c132ab370d3a42130269c3acccdbc62dCAS | 22738613PubMed |

[28]  Peel TN, Cheng AC, Choong PFM, Buising KL. Early onset prosthetic hip and knee joint infection: treatment and outcomes in Victoria, Australia. J Hosp Infect 2012; 82 248–53.
Early onset prosthetic hip and knee joint infection: treatment and outcomes in Victoria, Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FmslKltg%3D%3D&md5=a81932c701e473cdae8ccf1467dd6e20CAS | 23084482PubMed |

[29]  Pajkos A, Deva AK, Vickery K, Cope C, Chang L, Cossart YE. Detection of subclinical infection in significant breast implant capsules. Plast Reconstr Surg 2003; 111 1605–11.
Detection of subclinical infection in significant breast implant capsules.Crossref | GoogleScholarGoogle Scholar | 12655204PubMed |

[30]  Trampuz A, Zimmerli W. Antimicrobial agents in orthopaedic surgery. Drugs 2006; 66 1089–105.
Antimicrobial agents in orthopaedic surgery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslKgsLg%3D&md5=19ffb810cefa44d3eae7d94da27b95dbCAS | 16789794PubMed |

[31]  Darouiche RO. Treatment of Infections Associated with Surgical Implants. N Engl J Med 2004; 350 1422–9.
Treatment of Infections Associated with Surgical Implants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVagtrs%3D&md5=d8d56c5dddd4ed0b3a76867fed99077fCAS | 15070792PubMed |

[32]  Araco A, Caruso R, Araco F, Overton J, Gravante G. Capsular contractures: a systematic review. Plast Reconstr Surg 2009; 124 1808–19.
Capsular contractures: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ks7vL&md5=081168e9e3ffc55fec157b484585dbbdCAS | 19952637PubMed |

[33]  Tamboto H, Vickery K, Deva AK. Subclinical (biofilm) infection causes capsular contracture in a porcine model following augmentation mammaplasty. Plast Reconstr Surg 2010; 126 835–42.
Subclinical (biofilm) infection causes capsular contracture in a porcine model following augmentation mammaplasty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSis7nI&md5=ca55ce8c65cfd452f0df536bcd6e95eeCAS | 20811216PubMed |

[34]  Jacombs A, Allan J, Hu H, Valente PM, Wessels WLF, Deva AK, et al Prevention of Biofilm-Induced Capsular Contracture with Antibiotic-Impregnated Mesh in a Porcine Model. Aesthet Surg J 2012; 32 886–91.
Prevention of Biofilm-Induced Capsular Contracture with Antibiotic-Impregnated Mesh in a Porcine Model.Crossref | GoogleScholarGoogle Scholar | 22942116PubMed |

[35]  Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parvizi J. Prosthetic Joint Infection Risk After Total Hip Arthroplasty in the Medicare Population. J Arthroplasty 2009; 24 105–9.
Prosthetic Joint Infection Risk After Total Hip Arthroplasty in the Medicare Population.Crossref | GoogleScholarGoogle Scholar | 19493644PubMed |

[36]  Australian Orthopaedic Association National Joint Replacement Registry. National Joint Replacement Registry Annual Report. Adelaide: Australian Orthopaedic Association; 2011.

[37]  Nelson CL, McLaren AC, McLaren SG, Johnson JW, Smeltzer MS. Is Aseptic Loosening Truly Aseptic? Clin Orthop Relat Res 2005; 437 25–30.
Is Aseptic Loosening Truly Aseptic?Crossref | GoogleScholarGoogle Scholar | 16056022PubMed |

[38]  Bernard L, Lübbeke A, Stern R, Bru JP, Feron JM, Peyramond D, et al Value of Preoperative Investigations in Diagnosing Prosthetic Joint Infection: Retrospective Cohort Study and Literature Review. Scand J Infect Dis 2004; 36 410–6.
Value of Preoperative Investigations in Diagnosing Prosthetic Joint Infection: Retrospective Cohort Study and Literature Review.Crossref | GoogleScholarGoogle Scholar | 15307559PubMed |

[39]  Parvizi J, Della Valle CJ. AAOS Clinical Practice Guideline: Diagnosis and Treatment of Periprosthetic Joint Infections of the Hip and Knee. J Am Acad Orthop Surg 2010; 18 771–2.
| 21119143PubMed |

[40]  Tarkin IS, Dunman PM, Garvin KL. Improving the Treatment of Musculoskeletal Infections with Molecular Diagnostics. Clin Orthop Relat Res 2005; 437 83–8.
Improving the Treatment of Musculoskeletal Infections with Molecular Diagnostics.Crossref | GoogleScholarGoogle Scholar | 16056030PubMed |

[41]  Stoodley P, Ehrlich GD, Sedghizadeh PP, Hall-Stoodley L, Baratz ME, Altman DT, et al Orthopaedic biofilm infections. Curr Orthop Pract 2011; 22 558–63.
Orthopaedic biofilm infections.Crossref | GoogleScholarGoogle Scholar | 22323927PubMed |

[42]  Kobayashi MN, Procop MGW, Krebs MV, Kobayashi MH, Bauer MTW. Molecular Identification of Bacteria from Aseptically Loose Implants. Clin Orthop Relat Res 2008; 466 1716–25.
Molecular Identification of Bacteria from Aseptically Loose Implants.Crossref | GoogleScholarGoogle Scholar |

[43]  Marín M, Garcia-Lechuz JM, Alonso P, Villanueva M, Alcala L, Gimeno M, et al Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection. J Clin Microbiol 2012; 50 583–9.
Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection.Crossref | GoogleScholarGoogle Scholar | 22170934PubMed |

[44]  Tunney MM, Patrick S, Curran MD, Ramage G, Hanna D, Gorman SP, et al Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 1999; 37 3281–90.
| 1:CAS:528:DyaK1MXmsFekt7k%3D&md5=ef0e122c9114524385db7004d73d841aCAS | 10488193PubMed |

[45]  Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specalized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 2004; 186 8172–80.
Specalized persister cells and the mechanism of multidrug tolerance in Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSgsrzI&md5=7513146f4ae6f54c59c5670b97cedb24CAS | 15576765PubMed |

[46]  Falagas ME, Kapaskelis AM, Kouranos VD, Kakisi OK, Athanassa Z, Karageorgopoulos DE. Outcome of antimicrobial therapy in documented biofilm-associated infections: a review of the available clinical evidence. Drugs 2009; 69 1351–61.
Outcome of antimicrobial therapy in documented biofilm-associated infections: a review of the available clinical evidence.Crossref | GoogleScholarGoogle Scholar | 19583453PubMed |

[47]  Hanssen ADMD, Spangehl MJMD. Treatment of the Infected Hip Replacement. Clin Orthop Relat Res 2004; 420 63–71. [Report]
Treatment of the Infected Hip Replacement.Crossref | GoogleScholarGoogle Scholar |

[48]  Bejon P, Berendt A, Atkins BL, Green N, Parry H, Masters S, et al Two-stage revision for prosthetic joint infection: predictors of outcome and the role of reimplantation microbiology. J Antimicrob Chemother 2010; 65 569–75.
Two-stage revision for prosthetic joint infection: predictors of outcome and the role of reimplantation microbiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVWht7o%3D&md5=52536bcbdd77b1871c3f04df23bd58cdCAS | 20053693PubMed |

[49]  Sax H, Allegranzi B, Uçkay I, Larson E, Boyce J, Pittet D. ‘My five moments for hand hygiene’: a user-centred design approach to understand, train, monitor and report hand hygiene. J Hosp Infect 2007; 67 9–21.
‘My five moments for hand hygiene’: a user-centred design approach to understand, train, monitor and report hand hygiene.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srktVOnuw%3D%3D&md5=0b6582b1fc1ebb3a4307eacaec1e923cCAS | 17719685PubMed |

[50]  Dror N, Mandel M, Hazan Z, Lavie G. Advances in Microbial Biofilm Prevention on Indwelling Medical Devices with Emphasis on Usage of Acoustic Energy. Sensors 2009; 9 2538–54.
Advances in Microbial Biofilm Prevention on Indwelling Medical Devices with Emphasis on Usage of Acoustic Energy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1ahtb0%3D&md5=47bdfbb0b58cd2b7618fefc595c1fb7aCAS | 22574031PubMed |