Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Root-to-shoot signalling: integration of diverse molecules, pathways and functions

Sergey Shabala A E , Rosemary G. White B , Michael A. Djordjevic C , Yong-Ling Ruan D and Ulrike Mathesius C
+ Author Affiliations
- Author Affiliations

A School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.

B CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia.

C Plant Science Division, Research School of Biology, Building 134, Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia.

D School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.

E Corresponding author. Email: sergey.shabala@utas.edu.au

Functional Plant Biology 43(2) 87-104 https://doi.org/10.1071/FP15252
Submitted: 21 August 2015  Accepted: 6 October 2015   Published: 13 November 2015

Abstract

Plant adaptive potential is critically dependent upon efficient communication and co-ordination of resource allocation and signalling between above- and below-ground plant parts. Plant roots act as gatekeepers that sense and encode information about soil physical, chemical and biological factors, converting them into a sophisticated network of signals propagated both within the root itself, and also between the root and shoot, to optimise plant performance for a specific set of conditions. In return, plant roots receive and decode reciprocal information coming from the shoot. The communication modes are highly diverse and include a broad range of physical (electric and hydraulic signals, propagating Ca2+ and ROS waves), chemical (assimilates, hormones, peptides and nutrients), and molecular (proteins and RNA) signals. Further, different signalling systems operate at very different timescales. It remains unclear whether some of these signalling systems operate in a priming mode(s), whereas others deliver more specific information about the nature of the signal, or whether they carry the same ‘weight’. This review summarises the current knowledge of the above signalling mechanisms, and reveals their hierarchy, and highlights the importance of integration of these signalling components, to enable optimal plant functioning in a dynamic environment.

Additional keywords: assimilates, calcium waves, development, electric signals, hormones, hydraulic signalling, miRNA, nodulation, nutrients, peptides, proteins, ROS, stress, sugars, systemic response.


References

Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America 108, 20242–20247.
Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yqsb3P&md5=e371e95d496fa1694c3af4a8130f9cedCAS | 22123958PubMed |

Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827.
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVGgsL4%3D&md5=381ffdde740b8e8b16b2a83cd9c81859CAS | 15944706PubMed |

Allen JRF, Greenway AM, Baker DA (1979) Determinations of indole-3-acetic acid in xylem sap of Ricinus communis L. Using mass fragmentography. Planta 144, 299–303.
Determinations of indole-3-acetic acid in xylem sap of Ricinus communis L. Using mass fragmentography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXpvFCmtA%3D%3D&md5=5c6e0d9c903b234bfbc36c96ee94f7acCAS |

Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773–784.
Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1KlsLg%3D&md5=112cdc9dd6c33444d5df94470e67f262CAS | 9529253PubMed |

Alvarez JM, Vidal EA, Gutierrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Current Opinion in Plant Biology 15, 185–191.
Integration of local and systemic signaling pathways for plant N responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVKltr8%3D&md5=6f95d388fc11cf31a89c8b73dbd82487CAS | 22480431PubMed |

Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology 171, 670–687.
Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.Crossref | GoogleScholarGoogle Scholar | 24635902PubMed |

Arsovski AA, Galstyan A, Guseman JM, Nemhauser J (2012) Photomorphogenesis. The Arabidopsis Book / American Society of Plant Biologists 10, e0147
Photomorphogenesis.Crossref | GoogleScholarGoogle Scholar | 22582028PubMed |

Banerjee AK, Chatterjee M, Yu YY, Suh SG, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. The Plant Cell 18, 3443–3457.
Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVKruro%3D&md5=2a25aee597d102d55c002ed97648db88CAS | 17189340PubMed |

Batailler B, Lemaitre T, Vilaine F, Sanchez C, Renard D, Cayla T, Beneteau J, Dinant S (2012) Soluble and filamentous proteins in Arabidopsis sieve elements. Plant, Cell & Environment 35, 1258–1273.
Soluble and filamentous proteins in Arabidopsis sieve elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GitrfJ&md5=0dbbff420a52f22044019119a1eafe78CAS |

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229–1240.
ROS as key players in plant stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htLg%3D&md5=5dca876c7bc302e170ca5369e7441cbeCAS | 24253197PubMed |

Begheldo M, Nonis A, Trevisan S, Ruperti B, Quaggiotti S (2015) The dynamic regulation of microRNAs circuits in plant adaptation to abiotic stresses: a survey on molecular, physiological and methodological aspects. Environmental and Experimental Botany 114, 65–79.
The dynamic regulation of microRNAs circuits in plant adaptation to abiotic stresses: a survey on molecular, physiological and methodological aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOgt74%3D&md5=596627bf35f5e879c98a0a73e815beefCAS |

Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. The Plant Journal 11, 339–345.
The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFCktbc%3D&md5=3c503c85ba464a0ad7b72f53721eee40CAS |

Biles CL, Abeles FB (1991) Xylem sap proteins. Plant Physiology 96, 597–601.
Xylem sap proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVKisrg%3D&md5=d63ed6bc161eccb0168f7d35005b1b39CAS | 16668227PubMed |

Bobay BG, DiGennaro P, Scholl E, Imin N, Djordjevic MA, Bird DMK (2013) Solution NMR studies of the plant peptide hormone CEP inform function. FEBS Letters 587, 3979–3985.
Solution NMR studies of the plant peptide hormone CEP inform function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKms7bJ&md5=ba7efc02239311f7d8ae25abb8d4598fCAS | 24211833PubMed |

Boisson-Dernier A, Kessler SA, Grossniklaus U (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. Journal of Experimental Botany 62, 1581–1591.
The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVOnurk%3D&md5=925877b8f1b56353a69cf61bf7506de8CAS | 21252257PubMed |

Bose J, Pottosin I, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signalling and adaptation in plants. Frontiers in Plant Science 2, 1–17.
Calcium efflux systems in stress signalling and adaptation in plants.Crossref | GoogleScholarGoogle Scholar |

Bowling DJF, Watson BT, Ehwald R (1985) The effect of phloem ringing on root growth and potassium uptake by Helianthus annuus. Journal of Experimental Botany 36, 290–297.
The effect of phloem ringing on root growth and potassium uptake by Helianthus annuus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsVKgsL4%3D&md5=f55b858f12708ef0fa9e0e4f9a488079CAS |

Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 104, 14741–14746.
Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOns7jE&md5=3ff89103cb02acc335f6034991e655b1CAS | 17785412PubMed |

Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J (2004) Xylem sap protein composition is conserved among different plant species. Planta 219, 610–618.
Xylem sap protein composition is conserved among different plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Cqtb4%3D&md5=42b488b878de15d9930467b00fe20ad8CAS | 15064951PubMed |

Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. The Plant Journal 53, 739–749.
Identification and characterization of small RNAs from the phloem of Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFyjsrc%3D&md5=b415f9791594ec1a5c29caf7aadf80d0CAS | 18005229PubMed |

Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology 10, 64
Phloem small RNAs, nutrient stress responses, and systemic mobility.Crossref | GoogleScholarGoogle Scholar | 20388194PubMed |

Burdon Sanderson J (1872) Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula Ellis. Philosophical Proceedings of the Royal Society London 21, 495–496.
Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula Ellis.Crossref | GoogleScholarGoogle Scholar |

Campbell AK, Trewavas AJ, Knight MR (1996) Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium 19, 211–218.
Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVOntr8%3D&md5=ca306b05d1297dc744db2e6308045bceCAS | 8732261PubMed |

Carr DJ, Reid DM, Skene KGM (1964) The supply of gibberellins from the root to the shoot. Planta 63, 382–392.
The supply of gibberellins from the root to the shoot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXlsVKlsQ%3D%3D&md5=00ed8ddd82e64026f28d96ece45e1e72CAS |

Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology 62, 185–206.
Signaling network in sensing phosphate availability in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslans78%3D&md5=0842782a39ae0df2639f3cab7a47a4ffCAS | 21370979PubMed |

Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America 111, 6497–6502.
Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslGgtbw%3D&md5=c68542d1199e14bdcce9a0ce995a720cCAS | 24706854PubMed |

Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Current Opinion in Plant Biology 16, 293–300.
Hydraulic signals in long-distance signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVynsLg%3D&md5=bc7fa5983ad0dff8d178009a1fcf9028CAS | 23545219PubMed |

Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186, 143–153.
Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFKnsQ%3D%3D&md5=482e1fbc4385c2a8773a0202f96bdcb2CAS | 11538499PubMed |

Czyzewicz N, Yue K, Beeckman T, Smet ID (2013) Message in a bottle: small signalling peptide outputs during growth and development. Journal of Experimental Botany 64, 5281–5296.
Message in a bottle: small signalling peptide outputs during growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVars7jK&md5=4230411e1da49e3e319e502a356da87aCAS | 24014870PubMed |

David-Schwartz R, Runo S, Townsley B, Machuka J, Sinha N (2008) Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta. New Phytologist 179, 1133–1141.
Long-distance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in Cuscuta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur3E&md5=b4c492b8f3c49265e11390a77a6dc920CAS | 18631294PubMed |

Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Biology and Plant Molecular Biology 42, 55–76.
Root signals and the regulation of growth and development of plants in drying soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFSmsr8%3D&md5=1600dd39e4c53b02ee9b3a9fe62fc772CAS |

Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? In ‘Plant signalling, plasma membrane and change of state’. (Eds C Penel, H Grepin) pp. 119–137. (University of Geneva: Geneva, Switzerland)

Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiology 104, 309–314.

de Bernonville TD, Albenne C, Arlat M, Hoffmann L, Lauber E, Jamet E (2014) Xylem sap proteomics. Plant proteomics: methods and protocols. Methods in Molecular Biology 1072, 391–405.
Xylem sap proteomics. Plant proteomics: methods and protocols.Crossref | GoogleScholarGoogle Scholar | 24136537PubMed |

Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. The Plant Journal 55, 746–759.
Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqsLjN&md5=fe6cf15b9f34975bdf7aa25b8819764cCAS | 18485061PubMed |

DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. The Biochemical Journal 425, 27–40.
Breaking the code: Ca2+ sensors in plant signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sru7vM&md5=6460468ab76f2d78fe0241d48196fad9CAS |

Delay C, Imin N, Djordjevic MA (2013a) CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. Journal of Experimental Botany 64, 5383–5394.
CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVars7jI&md5=ba34ff9db838370116bfa3576af287adCAS | 24179096PubMed |

Delay C, Imin N, Djordjevic MA (2013b) Regulation of Arabidopsis root development by small signaling peptides. Frontiers in Plant Science 4, 352
Regulation of Arabidopsis root development by small signaling peptides.Crossref | GoogleScholarGoogle Scholar | 24046775PubMed |

Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiology 82, 588–590.
Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnhslagtQ%3D%3D&md5=7484297c5ce762f7fa96d3845bc94254CAS | 16665072PubMed |

Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist 175, 387–404.
Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSqs7w%3D&md5=b8a9c1ee0b8591a459f84c52a9c76a7aCAS | 17635215PubMed |

Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. The Plant Journal 32, 799–808.
Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWrsA%3D%3D&md5=abd3d06a8ef1eeefccd596d60f3f40deCAS | 12472694PubMed |

Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells. Journal of Cell Science 116, 81–88.
Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2lsA%3D%3D&md5=80739213f12e6ca67089079f9414f6d8CAS | 12456718PubMed |

Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal 49, 377–386.
Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyisLk%3D&md5=0f6f170e9664b867c12119c78c4cdfb5CAS | 17181775PubMed |

Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nature Reviews. Microbiology 2, 621–631.
Genetic regulation of biological nitrogen fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsl2ksLc%3D&md5=50899628ae3a84c37a0c6d74c7fd4f1eCAS | 15263897PubMed |

Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small-peptide signals that control root nodule number, development, and symbiosis. Journal of Experimental Botany 66, 5171–5181.
Small-peptide signals that control root nodule number, development, and symbiosis.Crossref | GoogleScholarGoogle Scholar | 26249310PubMed |

Dodd IC, Beveridge CA (2006) Xylem-borne cytokinins: still in search of a role? Journal of Experimental Botany 57, 1–4.
Xylem-borne cytokinins: still in search of a role?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCmsbvL&md5=9f265f2390c91396a2ef52d9e874fd23CAS | 16303826PubMed |

Dodd IC, Ngo C, Turnbull CGN, Beveridge CA (2004) Effects of nitrogen supply on xylem cytokinin delivery, transpiration and leaf expansion of pea genotypes differing in xylem-cytokinin concentration. Functional Plant Biology 31, 903–911.
Effects of nitrogen supply on xylem cytokinin delivery, transpiration and leaf expansion of pea genotypes differing in xylem-cytokinin concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsleltbg%3D&md5=701c4fe661db8d9b9a5899be428b0801CAS |

Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences of the United States of America 110, 8744–8749.
Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSjtb%2FE&md5=108a07f4ec2b0e224af49184ce963dafCAS | 23650383PubMed |

Dupres V, Alsteens D, Wilk S, Hansen B, Heinisch JJ, Dufrene YF (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nature Chemical Biology 5, 857–862.
The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGjt7vO&md5=4784f80957af33caec9ecedc46e136f7CAS | 19767735PubMed |

Dziubinska H, Trebacz K, Zawadzki T (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiologia Plantarum 75, 417–423.
The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum.Crossref | GoogleScholarGoogle Scholar |

Eliasson L (1972) Translocation of shoot-applied indolylacetic acid into the roots of Populus tremula. Physiologia Plantarum 27, 412–416.
Translocation of shoot-applied indolylacetic acid into the roots of Populus tremula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXisFagtQ%3D%3D&md5=574a53a0773b4f93628cd5eb6a250755CAS |

Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Australian Journal of Plant Physiology 25, 453–458.
Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1Gksr8%3D&md5=9c93ab061a5588313366d93810b9bb4fCAS |

Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science 210, 70–81.
Manipulation of microRNA expression to improve nitrogen use efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rtbrO&md5=b5eaab83e57cc1d306451a9fb678d3c7CAS | 23849115PubMed |

Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant 6, 76–87.
Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCntbg%3D&md5=cc8d5d03d8068e3a28a401328eae7165CAS | 23066094PubMed |

Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology 53, 203–224.
Local and long-range signaling pathways regulating plant responses to nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbk%3D&md5=edbc37634c3636321bfe2769581f9489CAS | 12221973PubMed |

Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant, Cell & Environment 30, 249–257.
Electrical signals and their physiological significance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlemu74%3D&md5=d25d7ae620a0fa205f3a8741f95ea69dCAS |

Fromm J, Hajirezaei M-R, Becker VK, Lautner S (2013) Electrical signalling along the phloem and its physiological response in the maize leaf. Frontiers in Plant Science 4, 239
Electrical signalling along the phloem and its physiological response in the maize leaf.Crossref | GoogleScholarGoogle Scholar | 23847642PubMed |

Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion. The Plant Cell 21, 2118–2132.
Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehtrfI&md5=54029ab2625f3aa31cc61f911c89637fCAS |

Furuichi T, Tatsumi H, Sokabe M (2008) Mechano-sensitive channels regulate the stomatal aperture in Vicia faba. Biochemical and Biophysical Research Communications 366, 758–762.
Mechano-sensitive channels regulate the stomatal aperture in Vicia faba.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVeltw%3D%3D&md5=d699f1d53bcb9de3a31952927eaa8649CAS | 18082621PubMed |

Gallé A, Lautner S, Flexas J, Fromm J (2015) Environmental stimuli and physiological responses: the current view on electrical signalling. Environmental and Experimental Botany 114, 15–21.
Environmental stimuli and physiological responses: the current view on electrical signalling.Crossref | GoogleScholarGoogle Scholar |

Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National Academy of Sciences of the United States of America 105, 803–808.
Cell-specific nitrogen responses mediate developmental plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSisrw%3D&md5=4512f9b31000656945c3fa418a78bd34CAS | 18180456PubMed |

Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science 19, 623–630.
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Wjs7vO&md5=b0629b4e8f39f370f06f45ea4f49aa40CAS | 25088679PubMed |

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455, 189–194.
Strigolactone inhibition of shoot branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qtLzK&md5=f573cb4faafff76dc5cf64caffad71a5CAS | 18690209PubMed |

Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays. Plant, Cell & Environment 30, 79–84.
Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays.Crossref | GoogleScholarGoogle Scholar |

Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant, Cell & Environment 32, 319–326.
Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKjsrk%3D&md5=42fa152102684fd5d981be394804810cCAS |

Gregory PJ, Atkinson CJ, Bengough AG, Else MA, Fernandez-Fernandez F, Harrison RJ, Schmidt S (2013) Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of Experimental Botany 64, 1209–1222.
Contributions of roots and rootstocks to sustainable, intensified crop production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFKqsLs%3D&md5=acfca4bbbf2da05e5edeaaef70a8d5c4CAS | 23378378PubMed |

Guo YF, Chen FJ, Zhang FS, Mi GH (2005) Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Science 169, 894–900.
Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslChurg%3D&md5=c09a1984864c3ec4af485a789c2498bfCAS |

Ham B-K, Lucas WJ (2014) The angiosperm phloem sieve tube system: a role in mediating traits to modern agriculture. Journal of Experimental Botany 65, 1799–1816.
The angiosperm phloem sieve tube system: a role in mediating traits to modern agriculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOlur0%3D&md5=bafd4e32eb62cb12c1559f74e337615bCAS | 24368503PubMed |

Hannapel DJ (2010) A model system of development regulated by the long-distance transport of mRNA. Journal of Integrative Plant Biology 52, 40–52.
A model system of development regulated by the long-distance transport of mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOhsL8%3D&md5=ee6956143a8b029d124acd833edb3f3fCAS | 20074139PubMed |

Hariadi Y, Shabala S (2004) Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Functional Plant Biology 31, 539–549.
Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKktbc%3D&md5=66b0dfc4ea8f18f6e18dd952dc80f1e6CAS |

Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Molecular Plant 4, 428–441.
TPC1-SV channels gain shape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyjt7g%3D&md5=4e7873b47e1003f8a46590ff1a1f3d87CAS | 21459829PubMed |

Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends in Plant Science 13, 264–272.
Long-distance signalling in plant defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1artbw%3D&md5=8ecbc8c3a7dff21fd962a52612b58ebcCAS | 18487073PubMed |

Hellsberg E, Montanari F, Ecker GF (2015) The ABC of phytohormone translocation. Planta Medica 81, 474–487.
The ABC of phytohormone translocation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFWisbg%3D&md5=b758ab9d99e6c454322a25a21c47d0acCAS | 25905596PubMed |

Hoad GV (1995) Transport of hormones in the phloem of higher plants. Plant Growth Regulation 16, 173–182.
Transport of hormones in the phloem of higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVCjurc%3D&md5=b07c3bbf8968c7eed58d7e34b710a83dCAS |

Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plant to soil drying. Journal of Experimental Botany 53, 1503–1514.
Stomatal control in tomato with ABA-deficient roots: response of grafted plant to soil drying.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlWjtbk%3D&md5=c3ea955b68a41ebd526fe7a2cf88f548CAS | 12021298PubMed |

Houterman PM, Speijer D, Dekker HL, de Koster CG, Cornelissen BJC, Rep M (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular Plant Pathology 8, 215–221.
The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVyrsLY%3D&md5=62f04304b0845aca15bfbc4d59e1d470CAS | 20507493PubMed |

Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Journal of Experimental Botany 64, 5395–5409.
The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVars7jO&md5=ea4290a754a41d432ac5a732f22e3536CAS | 24259455PubMed |

Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845.
Dodeca-CLE peptides as suppressors of plant stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVynt7o%3D&md5=84e07fd5ff68bb452714654e4ada648bCAS | 16902140PubMed |

Jin J, Watt M, Mathesius U (2012) The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiology 159, 489–500.
The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2gsLc%3D&md5=fffbd8f1a95f46d1705954b6dffec3abCAS | 22399647PubMed |

Kaiser H, Grams TEE (2006) Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. Journal of Experimental Botany 57, 2087–2092.
Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaqu74%3D&md5=5088404ed858a6eea7e809925a4e12f6CAS | 16698819PubMed |

Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654–657.
Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislyrtbc%3D&md5=b952bc2bcb256a64d0f8540c66feafbbCAS | 10213690PubMed |

Kassaw T, Bridges W, Frugoli J (2015) Multiple autoregulation of nodulation (aon) signals identified through split root analysis of Medicago truncatula sunn and rdn1 mutants. Plants 4, 209
Multiple autoregulation of nodulation (aon) signals identified through split root analysis of Medicago truncatula sunn and rdn1 mutants.Crossref | GoogleScholarGoogle Scholar |

Katicheva L, Sukhov V, Akinchits E, Vodeneev V (2014) Ionic nature of burn-induced variation potential in wheat leaves. Plant & Cell Physiology 55, 1511–1519.
Ionic nature of burn-induced variation potential in wheat leaves.Crossref | GoogleScholarGoogle Scholar |

Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Journal of Experimental Botany 57, 767–774.
Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOqtL4%3D&md5=628526aef14cc48bca60880564a4f917CAS | 16495410PubMed |

Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. Journal of Experimental Botany 59, 85–92.
Long distance transport and movement of RNA through the phloem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sitbo%3D&md5=908f5ea4a3c51b0047c97a019fbf9e04CAS | 17905731PubMed |

Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta 1819, 137–148.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaju7o%3D&md5=9c3fbd7c038070b57c2923f13039bb53CAS | 21605713PubMed |

Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287–289.
Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1ygs7c%3D&md5=e5879a3b20f2f62f269a7b219cccdc6dCAS | 11452121PubMed |

Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 1823, 398–405.
Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1CqtbY%3D&md5=439fc130d1ea43da3c9211f22ed4aa59CAS |

Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as a cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109, 11217–11221.
Photosynthetic sucrose acts as a cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WrurjM&md5=9f9f98c148ab254f18897d668157d010CAS | 22733756PubMed |

Kishimoto U, Takeuchi Y, Ohkawa T, Kami-ike N (1985) A kinetic analysis of the electrogenic pump of Chara corallina. III. Pump activity during action potential. Journal of Membrane Biology 86, 27–36.
A kinetic analysis of the electrogenic pump of Chara corallina. III. Pump activity during action potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvVGgsL4%3D&md5=42f97c507f66ec11eca54f6d37c99d37CAS |

Knoblauch M, Stubenrauch M, van Bel AJE, Peters WS (2012) Forisome performance in artificial sieve tubes. Plant, Cell & Environment 35, 1419–1427.
Forisome performance in artificial sieve tubes.Crossref | GoogleScholarGoogle Scholar |

Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell 19, 1065–1080.
Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyqu7Y%3D&md5=9c665f808aef2724ab87389b0b7b3aeeCAS | 17400895PubMed |

Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstrappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in non arbuscular mycorrhizal host Arabidopsis. Plant Physiology 155, 974–987.
Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in non arbuscular mycorrhizal host Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFymtbo%3D&md5=cba455c8a65a41f05900ceab1fa86686CAS | 21119045PubMed |

Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313, 845–848.
A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVynt7s%3D&md5=7a9129fce3029e69e576c2d9fddca5f1CAS | 16902141PubMed |

Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytologist 161, 715–722.
Transient knockout of photosynthesis mediated by electrical signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFehsb0%3D&md5=9f8384bdba1689e385a9e01cecd2b715CAS |

Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18, 927–937.
Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Kqt70%3D&md5=29fbfe7087b7889ef68419a00371427cCAS | 20627075PubMed |

Kumari A, Kumar J, Kumar A, Chaudhury A, Singh SP (2015) Grafting triggers differential responses between scion and rootstock. PLoS One 10, e0124438
Grafting triggers differential responses between scion and rootstock.Crossref | GoogleScholarGoogle Scholar | 25874958PubMed |

Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends in Plant Science 18, 227–233.
Plant mechanosensing and Ca2+ transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFShug%3D%3D&md5=e04fc458d66e844108c7f23112ec3fffCAS | 23291244PubMed |

Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science 6, 427
Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress.Crossref | GoogleScholarGoogle Scholar | 26113854PubMed |

Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiology 166, 689–700.
Functional soil microbiome: belowground solutions to an aboveground problem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKit7%2FE&md5=6b0e9ddf24db57fe36404d8887b90cf4CAS | 25059708PubMed |

Lau OS, Deng X-W (2010) Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology 13, 571–577.
Plant hormone signaling lightens up: integrators of light and hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKls7zO&md5=21b67925a8ecf8f39324be63d6d4628fCAS | 20739215PubMed |

Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiology 138, 2200–2209.
Characteristics of electrical signals in poplar and responses in photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12lsb8%3D&md5=c42ccbf002f4c3cd6ac4494676694915CAS | 16040648PubMed |

Lee J, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae 127, 93–105.
Current status of vegetable grafting: diffusion, grafting techniques, automation.Crossref | GoogleScholarGoogle Scholar |

Liang G, Ai Q, Yu D (2015) Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Scientific Reports 5, 11813
Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 26134148PubMed |

Liao C, Liu R, Zhang F, Li C, Li X (2012) Nitrogen under- and over-supply induces distinct protein responses in maize xylem sap. Journal of Integrative Plant Biology 54, 374–387.
Nitrogen under- and over-supply induces distinct protein responses in maize xylem sap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WksLfF&md5=41bf58d6370d5fd49db5d07ba20b73e6CAS | 22501030PubMed |

Ligat L, Lauber E, Albenne C, San Clemente H, Valot B, Zivy M, Pont-Lezica R, Arlat M, Jamet E (2011) Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 11, 1798–1813.
Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOht70%3D&md5=8b38286be102c81393c1b763c5ed7ad3CAS | 21413152PubMed |

Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology 147, 732–746.
Regulatory network of microRNA399 and PHO2 by systemic signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVyht7o%3D&md5=e2e6898f7a9db77c6ab790ecf3cad209CAS | 18390805PubMed |

Lin WY, Huang TK, Leong SJ, Chiou TJ (2014) Long-distance call from phosphate: systemic regulation of phosphate starvation responses. Journal of Experimental Botany 65, 1817–1827.
Long-distance call from phosphate: systemic regulation of phosphate starvation responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOltbc%3D&md5=9bf0cfa4496408c1d80322b96252cd0eCAS | 24368506PubMed |

Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology 57, 203–232.
Integrative plant biology: role of phloem long-distance macromolecular trafficking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKhtr4%3D&md5=bee2f28cf889a3f9cc0051cb27ed3787CAS | 16669761PubMed |

Luan M, Xu M, Lu Y, Zhang L, Fan Y, Wang L (2015) Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555, 178–185.
Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOmsL7J&md5=d2c226114013adf9ed0ff27d0ec65416CAS | 25445264PubMed |

Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, Lopez-Millan AF, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. Journal of Integrative Plant Biology 55, 294–388.
The plant vascular system: evolution, development and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVajsrk%3D&md5=b0eb866215fc9ccbcf003b031457b915CAS | 23462277PubMed |

Lüttge U (2013) Whole-plant physiology: synergistic emergence rather than modularity. Progress in Botany 74, 165–190.
Whole-plant physiology: synergistic emergence rather than modularity.Crossref | GoogleScholarGoogle Scholar |

MacGregor DR, Deak KI, Ingram PA, Malamy JE (2008) Root System architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. The Plant Cell 20, 2643–2660.
Root System architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWms7bO&md5=e01aea154b2a72fd9761e8ea2fa50a83CAS | 18952782PubMed |

Maksaev G, Haswell ES (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proceedings of the National Academy of Sciences of the United States of America 109, 19015–19020.
MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2itr3E&md5=898d7c36ae173f3a69eeb481b8353c05CAS | 23112188PubMed |

Malone M, Stankovic B (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant, Cell & Environment 14, 431–436.
Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat.Crossref | GoogleScholarGoogle Scholar |

Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Australian Journal of Plant Physiology 26, 55–61.
Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera.Crossref | GoogleScholarGoogle Scholar |

Marschner H (1995) ‘Mineral nutrition of higher plants.’ (Academic Press: London)

Matsubayashi Y (2011) Post-translational modifications in secreted peptide hormones in plants. Plant & Cell Physiology 52, 5–13.
Post-translational modifications in secreted peptide hormones in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVelurY%3D&md5=98bcad78a86196886f161148246fa44bCAS |

Matsubayashi Y (2014) Post-translationally modified small-peptide signals in plants. Annual Review of Plant Biology 65, 385–413.
Post-translationally modified small-peptide signals in plants.Crossref | GoogleScholarGoogle Scholar | 24779997PubMed |

Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annual Review of Plant Biology 57, 649–674.
Peptide hormones in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKht7g%3D&md5=128be6873f616f10ceeaf736b6608cabCAS | 16669777PubMed |

McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytologist 181, 275–294.
Shaping the calcium signature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvV2ns7k%3D&md5=c8ad3ed779f0eabb9b13058db57f2946CAS | 19121028PubMed |

Meena N, Kaur H, Mondal AK (2010) Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. Journal of Biological Chemistry 285, 12121–12132.
Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVGks78%3D&md5=5ee94153cb8a0d37a6884f95f8c4f8efCAS | 20164185PubMed |

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling 2, ra45
The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.Crossref | GoogleScholarGoogle Scholar | 19690331PubMed |

Mitchum MG, Wang X, Davis EL (2008) Diverse and conserved roles of CLE peptides. Current Opinion in Plant Biology 11, 75–81.
Diverse and conserved roles of CLE peptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVeqtLc%3D&md5=45d34807c689f398b4a764f25e999a1dCAS | 18078779PubMed |

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends in Plant Science 16, 300–309.
ROS signaling: the new wave?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrs7w%3D&md5=407d7f73a9b93facffa58ce49870f12dCAS | 21482172PubMed |

Miwa H, Tamaki T, Fukuda H, Sawa S (2009) Evolution of CLE signaling: origins of the CLV1 and SOL2/CRN receptor diversity. Plant Signaling & Behavior 4, 477–481.
Evolution of CLE signaling: origins of the CLV1 and SOL2/CRN receptor diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFelu70%3D&md5=bed6d0d34bbaf1f27e4a4e103ea64a53CAS |

Miyahara A, Hirani TA, Oakes M, Kereszt A, Kobe B, Djordjevic MA, Gresshoff PM (2008) Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro. Journal of Biological Chemistry 283, 25381–25391.
Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyisLvK&md5=8f10d94fb0fed92c6c844f889c7fc333CAS | 18606823PubMed |

Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyl transferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 103, 16598–16603.
Roles of Arabidopsis ATP/ADP isopentenyl transferases and tRNA isopentenyltransferases in cytokinin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WgtbzL&md5=5b9f078651906456d95d6a0a2620c461CAS | 17062755PubMed |

Mohd-Radzman NA, Binos S, Truong TT, Imin N, Mariani M, Djordjevic MA (2015) Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula. Journal of Experimental Botany 66, 5289–5300.
Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 25711701PubMed |

Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. Journal of Experimental Botany 64, 4663–4680.
A force of nature: molecular mechanisms of mechanoperception in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrsbnN&md5=67041ab111a5404f1ec2cce09e89d842CAS | 23913953PubMed |

Morris DA, Thomas AG (1978) A microautoradiographic study of auxin transport in the steam of intact pea seedlings. Journal of Experimental Botany 29, 147–157.
A microautoradiographic study of auxin transport in the steam of intact pea seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhvVKgsL4%3D&md5=1bb17df7b7e65587fa67740a4b5b9999CAS |

Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiology 153, 222–237.
CLE peptides control Medicago truncatula nodulation locally and systemically.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Ggs74%3D&md5=496deb0c3d315927595b5dddf32c35bfCAS | 20348212PubMed |

Mudgil Y, Uhrig JF, Zhou J, Temple B, Jiang K, Jones AM (2009) Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein–mediated pathway. The Plant Cell 21, 3591–3609.
Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein–mediated pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWqtw%3D%3D&md5=0864420a2bcd711d9f65f8a5beee56e5CAS | 19948787PubMed |

Munns R, Passioura JB, Milborrow BV, James RA, Close TJ (1993) Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size. Plant, Cell & Environment 16, 867–872.
Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVOhsr0%3D&md5=2a892c3893740830e4b7778443070eb7CAS |

Nath M, Tuteja N (2015) NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma
NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.Crossref | GoogleScholarGoogle Scholar | 26085375PubMed |

Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478, 119–122.
Control of flowering and storage organ formation in potato by FLOWERING LOCUS T.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltLbE&md5=be9a84d3aede808fcc2ddf8cca822c11CAS | 21947007PubMed |

Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420, 426–429.
HAR1 mediates systemic regulation of symbiotic organ development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFCis7k%3D&md5=e82cbfc5233802fc7b2278cf87833777CAS | 12442172PubMed |

Notaguchi M, Okamoto S (2015) Dynamics of long-distance signaling via plant vascular tissues. Frontiers in Plant Science 6, 161
Dynamics of long-distance signaling via plant vascular tissues.Crossref | GoogleScholarGoogle Scholar | 25852714PubMed |

Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T (2008) Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biology 8, 1–15.
Bioinformatic analysis of the CLE signaling peptide family.Crossref | GoogleScholarGoogle Scholar | 18171480PubMed |

Ogilvie HA, Imin N, Djordjevic MA (2014) Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genomics 15, 870
Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes.Crossref | GoogleScholarGoogle Scholar | 25287121PubMed |

Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. The Plant Journal 55, 152–160.
Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVSnsbs%3D&md5=ac8f21a3e0e416b3c38742d64fcb6ecbCAS | 18315543PubMed |

Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nature Chemical Biology 5, 578–580.
A glycopeptide regulating stem cell fate in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Sht70%3D&md5=79d17ef902ccba711b1cf4a5f28b9662CAS | 19525968PubMed |

Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nature Communications 4, 2191

Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. Journal of Experimental Botany 58, 3645–3656.
Characterization of phloem-sap transcription profile in melon plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhurnP&md5=bdcecdf12e088b83263acf02513baab3CAS | 17928373PubMed |

Opritov VA (1975) Propagating excitation and a functional activity of the conductive tissues in higher plants. D Sci thesis, Biophysics Department, Gor’kij State University, Gor’kij.

Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America 96, 6553–6557.
Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFKkur0%3D&md5=600f7e9abbce82763025279f31142670CAS | 10339626PubMed |

Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113–116.
Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWitb%2FF&md5=de6cdd6688b4f9f12eb69a67515005faCAS | 17916738PubMed |

Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes. Science 253, 895–897.
A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1ygu78%3D&md5=01fce9728a51c2f6092c0c25ab6fb612CAS | 17751827PubMed |

Peyronnet R, Tran D, Girault T, Frachisse JM (2014) Mechanosensitive channels: feeling tension in a world under pressure. Frontiers in Plant Science 5, 558
Mechanosensitive channels: feeling tension in a world under pressure.Crossref | GoogleScholarGoogle Scholar | 25374575PubMed |

Pieterse CMJ, Vnan der Does D, Zamiouides C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28, 489–521.
Hormonal modulation of plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslagtbrE&md5=41a82d7ced9caa3da2284ab84d56b901CAS |

Pottosin I, Velarde-Buendia AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. Journal of Experimental Botany 65, 1271–1283.
Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htbw%3D&md5=e187fcb6d9750982830fb0faa232e3b6CAS | 24465010PubMed |

Rasmussen A, Mason MG, de Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012) Strigolactones suppress advetitious rooting in Arabidopsis and pea. Plant Physiology 158, 1976–1987.
Strigolactones suppress advetitious rooting in Arabidopsis and pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1ehsLc%3D&md5=7d4f5a0dcdb800a27cdc60e45c62b7f4CAS | 22323776PubMed |

Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology 118, 1369–1378.
Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlQ%3D&md5=fdc0ebc47e4e876541cc5712fac88dbcCAS | 9847111PubMed |

Reid DE, Ferguson BJ, Gresshoff PM (2011a) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Molecular Plant-Microbe Interactions 24, 606–618.
Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2ltrY%3D&md5=05bc4f5720e00917e9d1181820767e2cCAS | 21198362PubMed |

Reid DE, Ferguson BJ, Hayashi S, Lin Y-H, Gresshoff PM (2011b) Molecular mechanisms controlling legume autoregulation of nodulation. Annals of Botany 108, 789–795.
Molecular mechanisms controlling legume autoregulation of nodulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eisbrE&md5=8e7b81dbeec8e0eda85b75a9522a3a97CAS | 21856632PubMed |

Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, de Koster CG, Cornelissen BJC (2003) A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Letters 534, 82–86.
A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1SktQ%3D%3D&md5=7d21e5bc8cb2d20e94258397031cd181CAS | 12527365PubMed |

Robbins NE, Trontin C, Duan L, Dinneny JR (2014) Beyond the barrier: communication in the root through the endodermis. Plant Physiology 166, 551–559.
Beyond the barrier: communication in the root through the endodermis.Crossref | GoogleScholarGoogle Scholar | 25125504PubMed |

Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nature Chemical Biology 5, 325–332.
Auxin and other signals on the move in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ksbk%3D&md5=ef6783c683f8a49898dc098ecf4c8650CAS | 19377459PubMed |

Rodríguez-Falcón M, Bou J, Prat S (2006) Seasonal control of tuberization in potato: conserved elements with the flowering response. Annual Review of Plant Biology 57, 151–180.
Seasonal control of tuberization in potato: conserved elements with the flowering response.Crossref | GoogleScholarGoogle Scholar | 16669759PubMed |

Ruan Y-L (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signalling. Annual Review of Plant Biology 65, 33–67.
Sucrose metabolism: gateway to diverse carbon use and sugar signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhtrrI&md5=26a26cfcc7e6e682ba6a62f77f7637e4CAS | 24579990PubMed |

Ruan Y-L, Patrick JW, Brady CJ (1996) The composition of apoplastic fluid recovered from intact developing tomato fruit. Australian Journal of Plant Physiology 23, 9–13.
The composition of apoplastic fluid recovered from intact developing tomato fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhslanur4%3D&md5=9c94a8082be98e0658fd9c83a692aec1CAS |

Ruan YL, Patrick JW, Shabala S, Slewinski TL (2013) Uptake and regulation of resource allocation for optimal plant performance and adaptation to stress. Frontiers in Plant Science 4, 455
Uptake and regulation of resource allocation for optimal plant performance and adaptation to stress.Crossref | GoogleScholarGoogle Scholar | 24294215PubMed |

Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the United States of America 108, 18524–18529.
Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFymu7bO&md5=953b28d40d7baa7ffc910ee58a29630fCAS | 22025711PubMed |

Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57, 431–449.
Cytokinins: activity, biosynthesis, and translocation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKhtrY%3D&md5=b0c30a1f64d91f25ad309a64e5db0865CAS | 16669769PubMed |

Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. The Plant Cell 11, 691–706.
Communicating with calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSrurk%3D&md5=af9f82477af8dc3d8471db1485b13f30CAS | 10213787PubMed |

Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M (2014) Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications 5, 4983

Satoh S, Iizuka C, Kikuchi A, Nakamura N, Fujii T (1992) Proteins and carbohydrates in xylem sap from squash root. Plant & Cell Physiology 33, 841–847.

Saur I, Oakes M, Djordjevic MA, Imin N (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytologist 190, 865–874.
Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Crur4%3D&md5=bcc500404ac994208a140431887778c8CAS | 21507004PubMed |

Schachtman DP, Goodger JQD (2008) Chemical root to shoot signalling under drought. Trends in Plant Science 13, 281–287.
Chemical root to shoot signalling under drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1artbg%3D&md5=55a831cd311a0f98650a93f677f7a0a6CAS | 18467158PubMed |

Schill V, Hartung W, Orthen B, Weisenseel MH (1996) The xylem sap of maple (Acer platanoides) trees-sap obtained by a novel method shows changes with season and height. Journal of Experimental Botany 47, 123–133.
The xylem sap of maple (Acer platanoides) trees-sap obtained by a novel method shows changes with season and height.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhtlajtb0%3D&md5=5d72aa1bb092aa85b29eafa45330c04aCAS |

Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Molecular Biology 58, 809–822.
The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length.Crossref | GoogleScholarGoogle Scholar | 16240175PubMed |

Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 109–112.
Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVensLo%3D&md5=70666f73f5b806e164bd8e6f80723c42CAS | 12411574PubMed |

Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell & Environment 34, 514–524.
Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOgtr4%3D&md5=63a1fd0ed5979ed1342c4f2008fe2316CAS |

Shabala S (1989) Light-induced bioelectric oscillations and their relation to some physiological processes in plants. PhD thesis, Institute of Experimental Botany, Minsk, Belarus.

Shabala SN (1997) Leaf bioelectric responses to rhythmical light: Identification of the contributions from stomatal and mesophyll cells. Australian Journal of Plant Physiology 24, 741–749.
Leaf bioelectric responses to rhythmical light: Identification of the contributions from stomatal and mesophyll cells.Crossref | GoogleScholarGoogle Scholar |

Shabala S (2007) Transport from root to shoot. In ‘Plant solute transport’. (Eds AR Yeo, TJ Flowers) pp. 214–234. (Blackwell Publishing: Oxford)

Shabala SN, Maslobrod SN, Zhakote AG (1988) Inducible oscillations of the leaf bioelectric potentials as a characteristic of an interaction in the plant systems. Doklady Akademii Nauk USSR 299, 766–768.

Shabala S, Pang JY, Zhou MX, Shabala L, Cuin TA, Nick P, Wegner LH (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant, Cell & Environment 32, 194–207.
Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1ertrg%3D&md5=849fbac1ec65e327004e05260fef51d4CAS |

Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiology 113, 209–217.

Stahlberg R, Van Volkenburgh E, Cleland RE (2001) Long-distance signaling within Coleus × hybridus leaves; mediated by changes in intra-leaf CO2? Planta 213, 342–351.
Long-distance signaling within Coleus × hybridus leaves; mediated by changes in intra-leaf CO2?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFGit70%3D&md5=b64066b651fa64e107428af69151d3f9CAS | 11506356PubMed |

Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials—a propagating electrical signal unique to higher plants. In ‘Communication in plants’. (Eds F Baluska, S Mancuso, D Volkmann) pp. 291–308. (Springer: Berlin)

Steinhorst L, Kudla J (2014) Signaling in cells and organisms – calcium holds the line. Current Opinion in Plant Biology 22, 14–21.
Signaling in cells and organisms – calcium holds the line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVyhsbfJ&md5=b2a5dc21e467bbd28ac6e5f22d92ed84CAS | 25195171PubMed |

Sukhov V, Nerush V, Lova LO, Vodeneev V (2011) Simulation of action potential propagation in plants. Journal of Theoretical Biology 291, 47–55.
Simulation of action potential propagation in plants.Crossref | GoogleScholarGoogle Scholar | 21959317PubMed |

Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment 35, 259–270.
ROS and redox signalling in the response of plants to abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVKnsL0%3D&md5=35b0ecf88c8c7e495753f66cd5c03a47CAS |

Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL, Luo XZ, Shah J, Schlauch K, Shulaev V, Mittler R (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. The Plant Cell 25, 3553–3569.
Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOktrfI&md5=db77909d9835756b191f15ce5d7c4715CAS | 24038652PubMed |

Symons GM, Reid JB (2004) Brassinosteroids do not undergo long distance transport in pea. Implications for the regulation of endogenous brssinosteroid levels. Plant Physiology 135, 2196–2206.
Brassinosteroids do not undergo long distance transport in pea. Implications for the regulation of endogenous brssinosteroid levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1GgsL8%3D&md5=07320c09bee063e6616d22cded3865e5CAS | 15299131PubMed |

Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346.
Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslChtb3O&md5=f3fa13f73cfc5ab46f6be8366121a023CAS | 25324386PubMed |

Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant and Cell Physiology 42, 85–93.
Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1CntA%3D%3D&md5=7b01a5fdd93484b2510d11d7af9e5963CAS | 11158447PubMed |

Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant & Cell Physiology 45, 1053–1062.
AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sktb4%3D&md5=edf7ffae213030b392fa5cdb93440a2cCAS |

Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. The Plant Cell 27, 2095–2118.
The plant peptidome: an expanding repertoire of structural features and biological functions.Crossref | GoogleScholarGoogle Scholar | 26276833PubMed |

Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: a new insight with new techniques. Journal of Experimental Botany 48, 609–622.
Ion channel activity during the action potential in Chara: a new insight with new techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1eqtbs%3D&md5=048f70ae681bdb14ab09a4ec06adc078CAS | 21245235PubMed |

Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Miñambres M, Walther D, Schulze WX, Pax-Ares J, Scheible W-R, Kragler F (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1, 15025
Endogenous Arabidopsis messenger RNAs transported to distant tissues.Crossref | GoogleScholarGoogle Scholar |

Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA (2007) 11C imaging: methyl jasmonate movement in both phloem and xylem, and of photoassimilate even after proton transport is uncoupled. Planta 226, 541–551.
11C imaging: methyl jasmonate movement in both phloem and xylem, and of photoassimilate even after proton transport is uncoupled.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Srtb8%3D&md5=2a1869ceb833d08e83ee6dce144b9c26CAS | 17356850PubMed |

Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology 8, 397–403.
Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFGgtrg%3D&md5=74e496b189722a992d850cab8f7c928aCAS | 15939662PubMed |

Trouverie J, Vidal G, Zhang Z, Sirichandra C, Madiona K, Amiar Z, Prioul JL, Jeannette E, Rona JP, Brault M (2008) Anion channel activation and proton pumping inhibition involved in the plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells are both ROS dependent. Plant & Cell Physiology 49, 1495–1507.
Anion channel activation and proton pumping inhibition involved in the plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells are both ROS dependent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaiurvI&md5=a69e254604a3d55854dbaa8da38b2399CAS |

Turnbull CGN, Lopez-Cobollo RM (2013) Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytologist 198, 33–51.
Heavy traffic in the fast lane: long-distance signalling by macromolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWntbs%3D&md5=edcd14af8cf537a85f82340d8efc359aCAS |

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200.
Inhibition of shoot branching by new terpenoid plant hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qtLnE&md5=c2c187ba909f69e5e24fe1ef8835e9c1CAS | 18690207PubMed |

Urano D, Phan N, Jones JC, Yang J, Huang J, Grigston J, Taylor JP, Jones AM (2012) Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nature Cell Biology 14, 1079–1088.
Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12jsLnI&md5=9c5f70023d93a45a2c8ea6691f2b3059CAS | 22940907PubMed |

van Bel AJE (2003) Transport phloem: low profile, high impact. Plant Physiology 131, 1509–1510.

van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB (2014) Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway. Journal of Experimental Botany 65, 1761–1787.
Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOltbg%3D&md5=5424a09ee1ef83bbcac95366bccc719cCAS |

van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiology 140, 1494–1506.
Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2js78%3D&md5=04537fa8847f63ea442a9f604eb27704CAS | 16489131PubMed |

Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. The Plant Cell 23, 855–864.
Intercellular communication during plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yjs78%3D&md5=52a008ed4ed5c0236bb6f4e8a0354fb6CAS | 21386031PubMed |

van West P, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Shepherd SJ, Gow NAR (2002) Oomycete plant pathogens use electric fields to target roots. Molecular Plant-Microbe Interactions 15, 790–798.
Oomycete plant pathogens use electric fields to target roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVeht7o%3D&md5=00a5955d6b4dabcf55f69ea1db6858dcCAS | 12182336PubMed |

Vanstraelen M, Benkova E (2012) Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28, 463–487.
Hormonal interactions in the regulation of plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslagtbrL&md5=07b376ca76d92f2132783793f1f1ad60CAS | 22856461PubMed |

Vidal EA, Araus V, Lu C, Parry G, Green PJ, Curuzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107, 4477–4482.
Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlKmtr8%3D&md5=9f0491265ff44ab17a0cb701fefd39f4CAS | 20142497PubMed |

Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signaling & Behavior 2, 139–145.
Closing of Venus flytrap by electrical stimulation of motor cells.Crossref | GoogleScholarGoogle Scholar |

Wan J, Cabanillas DC, Zheng H, Laliberté J-F (2015) Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. Plant Physiology 167, 1374–1388.
Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVKksbY%3D&md5=c0c602d8a0dc9157ed9f6f80972d747bCAS | 25717035PubMed |

Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS (2012) The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. EMBO Journal 31, 2648–2659.
The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Wntrs%3D&md5=bbd69f73c280250285b328f48a9c4ee5CAS | 22543870PubMed |

Wegner LH, Sattelmacher B, Lauchli A, Zimmermann U (1999) Trans-root potential, xylem pressure, and root cortical membrane potential of ‘low-salt’ maize plants as influenced by nitrate and ammonium. Plant, Cell & Environment 22, 1549–1558.
Trans-root potential, xylem pressure, and root cortical membrane potential of ‘low-salt’ maize plants as influenced by nitrate and ammonium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVKmsA%3D%3D&md5=cde28b0750f59c48a9d815d58c006d56CAS |

Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na+ and K+ transport into xylem vessels. Plant, Cell & Environment 34, 859–869.
Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na+ and K+ transport into xylem vessels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVGksLs%3D&md5=3781c0dfe9c71d41ccad29c1337d9ddeCAS |

Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186.
Glucose–TOR signalling reprograms the transcriptome and activates meristems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFOksbw%3D&md5=60cbb16d70f68b58a66dce4e2b63f6deCAS | 23542588PubMed |

Xiong TC, Ronzier E, Sanchez F, Corratge-Faillie C, Mazars C, Thibaud JB (2014) Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter. Frontiers in Plant Science 5, 43
Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter.Crossref | GoogleScholarGoogle Scholar | 24600459PubMed |

Yadeta KA, Thomma BPHJ (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science 4, 97
The xylem as battleground for plant hosts and vascular wilt pathogens.Crossref | GoogleScholarGoogle Scholar | 23630534PubMed |

Yoneyama K, Kisugi T, Xie X, Arakawa R, Ezawa T, Nomura T, Yoneyama K (2015) Shoot-derived signals other than auxins are involved in systemic regulation of strigolactone production in roots. Planta 241, 687–698.
Shoot-derived signals other than auxins are involved in systemic regulation of strigolactone production in roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKksrnF&md5=b074614cf9a2e66e7713b915528ffc48CAS | 25417194PubMed |

Zepeda-Jazo I, Velarde-Buendia AM, Enriquez-Figueroa R, Bose J, Shabala S, Muniz-Murguia J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology 157, 2167–2180.
Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ektL3E&md5=b42495f768c994c088521eb465f72ad7CAS | 21980172PubMed |

Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. Journal of Experimental Botany 62, 2371–2379.
Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Clt7g%3D&md5=8b220bb3c195fd73d3cb4777e6f00b66CAS | 21262908PubMed |

Zhang W, Kollwig G, Stecyk E, Apelt F, Dirks R, Kragler F (2014a) Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers. The Plant Journal 80, 106–121.
Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOnsbzI&md5=d5504b18811082f722b5c9ada5a08972CAS | 25039964PubMed |

Zhang Z, Liao H, Lucas WJ (2014b) Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. Journal of Integrative Plant Biology 56, 192–220.
Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlOitb8%3D&md5=70d65b1456beba45f28b2ffd5fbcbb63CAS | 24417933PubMed |

Zhang Z, Xin W, Wang S, Zhang X, Dai H, Sun R, Frazier T, Zhang B, Wang Q (2015) Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Functional & Integrative Genomics 15, 17–26.
Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVers73N&md5=75285bd253318e8ff27cdb1833665ecfCAS |

Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications 354, 585–590.
Identification of drought-induced microRNAs in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOgtb4%3D&md5=f635baef6f4b5b1f23ceca3a72fdabc6CAS | 17254555PubMed |