Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Shoot–root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation

Lu Wang A B and Yong-Ling Ruan A C
+ Author Affiliations
- Author Affiliations

A School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.

B Present address: School of Plant Science, University of Tasmania, Hobart, Tas. 7001, Australia.

C Corresponding author. Email: yong-ling.ruan@newcastle.edu.au

Functional Plant Biology 43(2) 105-113 https://doi.org/10.1071/FP15249
Submitted: 19 August 2015  Accepted: 24 October 2015   Published: 20 November 2015

Abstract

Roots and shoots are distantly located but functionally interdependent. The growth and development of these two organ systems compete for energy and nutrient resource, and yet, they keep a dynamic balance with each other for growth and development. The success of such a relationship depends on efficient root-shoot communication. Aside from the well-known signalling processes mediated by hormones such as auxin and cytokinin, sugars have recently been shown to act as a rapid signal to co-ordinate root and shoot development in response to endogenous and exogenous clues, in parallel to their function as carbon and energy resources for biomass production. New findings from studies on vascular fluids have provided molecular insights into the role of sugars in long-distance communications between shoot and root. In this review, we discussed phloem- and xylem- translocation of sugars and the impacts of sugar allocation and signalling on balancing root–shoot development. Also, we have taken the shoot–root carbon–nitrogen allocation as an example to illustrate the communication between the two organs through multi-layer root–shoot–root signalling circuits, comprising sugar, nitrogen, cytokinin, auxin and vascular small peptide signals.

Additional keywords: carbon partitioning, phloem and xylem, root development, shoot growth, sugar signalling.


References

Améglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien JL, Petel G, Guilliot A, Lacointe A (2004) Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiology 24, 785–793.
Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair.Crossref | GoogleScholarGoogle Scholar | 15123450PubMed |

Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant, Cell & Environment 9, 511–519.

Apelt F, Breuer D, Nikoloski Z, Stitt M, Kragler F (2015) Phytotyping (4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth. The Plant Journal 82, 693–706.
Phytotyping (4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVWntb0%3D&md5=7a0d0135870b203cb449644cc64e8255CAS | 25801304PubMed |

Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942.
A central integrator of transcription networks in plant stress and energy signalling.Crossref | GoogleScholarGoogle Scholar | 17671505PubMed |

Bailey-Serres J, Voesenek LA (2010) Life in the balance: a signaling network controlling survival of flooding. Current Opinion in Plant Biology 13, 489–494.
Life in the balance: a signaling network controlling survival of flooding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKls7%2FM&md5=8a71c0e56cbe4945f48044b3fe10f0a3CAS | 20813578PubMed |

Bates LM, Hall AE (1981) Stomatal closure with soil water depletion not associated with changes in bulk leaf water status. Oecologia 50, 62–65.
Stomatal closure with soil water depletion not associated with changes in bulk leaf water status.Crossref | GoogleScholarGoogle Scholar |

Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology 25, 10–16.
The increasing importance of distinguishing among plant nitrogen sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFaqs7o%3D&md5=d03b4f7e9ff96136b2685f972ff1a38dCAS | 25899331PubMed |

Bloom AJ, Jackson IE, Smart DR (1993) Root growth as a function of ammonium and nitrate in the root zone. Plant, Cell & Environment 16, 199–206.
Root growth as a function of ammonium and nitrate in the root zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFCms70%3D&md5=28f818667face306c107af93ee4e9517CAS |

Booker KS, Schwarz J, Garrett MB, Jones AM (2010) Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by heterotrimetic G protein complex. PLoS One 5, e12833
Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by heterotrimetic G protein complex.Crossref | GoogleScholarGoogle Scholar | 20862254PubMed |

Brauner K, Hörmiller I, Nägele T, Heyer A (2014) Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana. The Plant Journal 79, 82–91.
Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVahtb3E&md5=2934ee436f4219b2efba97e8da8f09dbCAS | 24836712PubMed |

Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211, 98–104.
Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVyhsLk%3D&md5=d65ddb299cbb172a4556311c580381bfCAS | 10923709PubMed |

Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnal L, Renou J-P, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal 57, 426–435.
The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kitb4%3D&md5=a0e6fec493a512d708d56f96a499f947CAS | 18826430PubMed |

Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB (2015) Transport of sugars. Annual Review of Biochemistry 84, 865–894.
Transport of sugars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyrt7%2FO&md5=593191b6a8855fc3163d6102f6414cc4CAS | 25747398PubMed |

Chung HJ, Sehnke PC, Ferl RJ (1999) The 14-3-3 proteins: cellular regulators of plant metabolism. Trends in Plant Science 4, 367–371.
The 14-3-3 proteins: cellular regulators of plant metabolism.Crossref | GoogleScholarGoogle Scholar | 10462770PubMed |

Considine MJ, Foyer CH (2014) Redox regulation of plant development. Antioxidants & Redox Signalling 21, 1305–1326.
Redox regulation of plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2ltrzK&md5=af747e6d525552802d529773576182deCAS |

Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology 125, 61–64.
Nitrogen and carbon nutrient and metabolite signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslymtL8%3D&md5=6d4edf2d278ce07c752871952d568525CAS | 11154297PubMed |

Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology 142, 1574–1588.
Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCns7vL&md5=ac5f15d0463a9f9c2e1213fdfa907965CAS | 17085515PubMed |

de Jong F, Thodey K, Lejay LV, Bevan MW (2014) Glucose elevates NITRATE TRANSPORTER2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression. Plant Physiology 164, 308–320.
Glucose elevates NITRATE TRANSPORTER2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Cqt7c%3D&md5=5e85b1bbe7af49ab5d1e31121c94196cCAS | 24272701PubMed |

Diaz C, Kusano M, Sulpice R, Araki M, Redestig H, Saito K, Stitt M, Shin R (2011) Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC Systems Biology 5, 192–201.
Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisV2nsrc%3D&md5=2be610ee417c1a02af67a1ae14c5991aCAS | 22104211PubMed |

Dodd IC (2005) Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant and Soil 274, 251–270.
Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiurfM&md5=ca37afd3be77db737f85b9f1b8bacdb6CAS |

Eveland AL, Jackson DP (2012) Sugars, signaling, and plant development. Journal of Experimental Botany 63, 3367–3377.
Sugars, signaling, and plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSitbw%3D&md5=70ec813f05d1ad8cf0a07d36ddd880f0CAS | 22140246PubMed |

Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. The Plant Cell 21, 2750–2761.
The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVejtbfE&md5=4312f97c6cf9347f2301ee27180ef4faCAS | 19734434PubMed |

Farrar JF, Minchin PEH (1991) Carbon partitioning in split root systems of barley: relation to metabolism. Journal of Experimental Botany 42, 1261–1269.
Carbon partitioning in split root systems of barley: relation to metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVCnsQ%3D%3D&md5=1d59b4a2e724ba5ab8d95f9fa98085e1CAS |

Fettke J, Fernie AR (2015) Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. Trends in Plant Science
Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism.Crossref | GoogleScholarGoogle Scholar | 26008154PubMed |

Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology 53, 203–224.
Local and long-range signaling pathways regulating plant responses to nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbk%3D&md5=edbc37634c3636321bfe2769581f9489CAS | 12221973PubMed |

Fry SC, Aldington S, Hetherington PR, Aitken J (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiology 103, 1–5.
Oligosaccharides as signals and substrates in the plant cell wall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFar&md5=11e7b51d7b60160bebdb6b69485b716bCAS | 8208845PubMed |

Gan YT, Liang BC, Liu LP, Wang X, McDonald CL (2011) C : N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops. Crop and Pasture Science 62, 496–503.
C : N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFCgsLs%3D&md5=2356799ef3dde8bc286febab514b0ebfCAS |

Gao P, Xin Z, Zheng ZL (2008) The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS One 3, e1387
The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 18167546PubMed |

Giehl RF, von Wirén N (2014) Root nutrient foraging. Plant Physiology 166, 509–517.
Root nutrient foraging.Crossref | GoogleScholarGoogle Scholar | 25082891PubMed |

Girin T, El-Kafafi el-S, Widiez T, Erban A, Hubberten HM, Kopka J, Hoefgen R, Gojon A, Lepetit M (2010) Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant. Plant Physiology 153, 1250–1260.
Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFejtr0%3D&md5=d81d57e90df3a912e72deed5c1660669CAS | 20448103PubMed |

Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor(s) in plants. Journal of Experimental Botany 62, 2299–2308.
Nitrate transceptor(s) in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1CltLY%3D&md5=60df1f8a5cd294798263d4ea7d4d1f9fCAS | 21239382PubMed |

Guo FQ, Wang R, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. Journal of Experimental Botany 53, 835–844.
The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSntLk%3D&md5=5314a8ab9888d51f35f8791142c891e8CAS | 11912226PubMed |

Gutiérrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biology 8, R7
Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 17217541PubMed |

Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. Journal of Experimental Botany 54, 467–475.
Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKgtb4%3D&md5=cdf971d85f34742892fa6b38f7a2f541CAS | 12508057PubMed |

Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biology 8, 389–396.
Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosFahtbY%3D&md5=506b04eb77ec73ebcebdde1f83103910CAS | 16807832PubMed |

Hedrich R, Sauer N, Neuhaus HE (2015) Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. Current Opinion in Plant Biology 25, 63–70.
Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlWktr8%3D&md5=232c505a2f6ac7e416169d8cc7adfceeCAS | 26000864PubMed |

Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138, 1184–1194.
CHL1 functions as a nitrate sensor in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyrsbvF&md5=e4ddfe975a458f023447e8f16e59f14bCAS | 19766570PubMed |

Hsu PK, Tsay YF (2013) Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiology 163, 844–856.
Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OjsL3K&md5=76b72b236a859e12267d90adefbb457dCAS | 24006285PubMed |

Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase regulates the low-affinity phase of the primary nitrate response. The Plant Journal 57, 264–278.
AtCIPK8, a CBL-interacting protein kinase regulates the low-affinity phase of the primary nitrate response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SgtLg%3D&md5=e40caf4d43c181824fe32f42164e6944CAS | 18798873PubMed |

Ishihara H, Obata T, Sulpice R, Fernie AR, Stitt M (2015) Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiology 168, 74–93.
Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFSiu7w%3D&md5=0bafdca161b5f683e8c04d0f998b78d8CAS | 25810096PubMed |

Iwai H, Usui M, Hoshino H, Kamada H, Matsunage T, Kakegawa K, Ishii T, Satoh S (2003) Analysis of sugars in squash xylem sap. Plant & Cell Physiology 44, 582–587.
Analysis of sugars in squash xylem sap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFSjsL0%3D&md5=0d931832cec3e433a338c6369f985130CAS |

John M, Rohrig H, Schmidt J, Walden R, Schell J (1997) Cell signaling by oligosaccharides. Trends in Plant Science 2, 111–115.
Cell signaling by oligosaccharides.Crossref | GoogleScholarGoogle Scholar |

Jones AM, Grossmann G, Danielson JÅ, Sosso D, Chen LQ, Ho CH, Frommer WB (2013) In vivo biochemistry: applications for small molecule biosensors in plant biology. Current Opinion in Plant Biology 16, 389–395.
In vivo biochemistry: applications for small molecule biosensors in plant biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Onu7Y%3D&md5=a4da12b5d7f94f597ce9ee291ed1b9f5CAS | 23587939PubMed |

Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100, 6872–6877.
The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlygt74%3D&md5=4a401220642459f124e72aefad2769e3CAS | 12738881PubMed |

Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscissic acid, and cytokinin. Journal of Experimental Botany 62, 1399–1409.
Hormonal control of nitrogen acquisition: roles of auxin, abscissic acid, and cytokinin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gjtrs%3D&md5=e3789d626b8bcb11b02bedeb08bd6884CAS | 21196475PubMed |

Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as a cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109, 11217–11221.
Photosynthetic sucrose acts as a cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WrurjM&md5=9f9f98c148ab254f18897d668157d010CAS | 22733756PubMed |

Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology 25, 115–122.
Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt1Krt7o%3D&md5=d783822c631adb1a97fe5b853564ab78CAS | 26037390PubMed |

Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany 65, 789–798.
Nitrate transport and signalling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOjt78%3D&md5=c14f004982268b5d20662aedeb4dff40CAS | 24532451PubMed |

Krouk G, Tillard P, Gojon A (2006) Regulation of the high-affinity NO3 – uptake system by NRT1.1-mediated NO3 – demand signaling in Arabidopsis. Plant Physiology 142, 1075–1086.
Regulation of the high-affinity NO3 uptake system by NRT1.1-mediated NO3 demand signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurfK&md5=71ad9e4df2019d1514145867f9748913CAS | 16998085PubMed |

Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18, 927–937.
Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Kqt70%3D&md5=29fbfe7087b7889ef68419a00371427cCAS | 20627075PubMed |

Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal 9, 826–837.
Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtrjM&md5=88a1f57f185f484c9208cf347c059437CAS | 21624033PubMed |

Laurie S, McKibbin RS, Halford NG (2003) Antisense SNF1-related 554 Carbon and nitrogen balancing in plants (SnRK1) protein kinase gene represses transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos. Journal of Experimental Botany 54, 739–747.
Antisense SNF1-related 554 Carbon and nitrogen balancing in plants (SnRK1) protein kinase gene represses transient activity of an α-amylase (α-Amy2) gene promoter in cultured wheat embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1aru78%3D&md5=49ea8b27f9b0824a95d81b92d067f53cCAS | 12554717PubMed |

LeClere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiology 153, 306–318.
Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Ggs7k%3D&md5=9a2c9540a1b101a1255d5fd9ecdf7047CAS | 20237017PubMed |

Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4, 272
Source-to-sink transport of sugar and regulation by environmental factors.Crossref | GoogleScholarGoogle Scholar | 23898339PubMed |

Lilley JL, Gee CW, Sairanen I, Ljung K, Nemhauser JL (2012) An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiology 160, 2261–2270.
An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmtLzI&md5=1d8b1ca7a2c041828920c4dd5aca6026CAS | 23073695PubMed |

Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America 102, 13693–13698.
The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygtrzE&md5=1c200bb1cf03a91aaeaa48389549754fCAS | 16157886PubMed |

Liu J, Vance CP (2010) Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: a tale of two team players? Plant Signaling & Behavior 5, 1556–1560.
Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: a tale of two team players?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gqtr7M&md5=67ab07b942552aecffd075141c03aa30CAS |

Liu DD, Chao WM, Turgeon R (2012) Transport of sucrose, not hexose, in the phloem. Journal of Experimental Botany 63, 4315–4320.
Transport of sucrose, not hexose, in the phloem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSlsLvI&md5=cedb97684c7c51694922c8dc67da4747CAS | 22553289PubMed |

Liu Y, Offler CE, Ruan Y-L (2013) Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Frontiers in Plant Science 4, article 282
Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals.Crossref | GoogleScholarGoogle Scholar |

Ljung K, Nemhauser JL, Perata P (2015) New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology 25, 130–137.
New mechanistic links between sugar and hormone signalling networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt1KrurY%3D&md5=0d7ff72848d6383c2ae38960e2cc8811CAS | 26037392PubMed |

MacDougall AJ, Rigby NM, Need PW, Selvendran RR (1992) Movement and metabolism of oligogalacturonide elicitors in tomato shoots. Planta 188, 566–574.
Movement and metabolism of oligogalacturonide elicitors in tomato shoots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1CqsQ%3D%3D&md5=676c5d26cb7cd06b43e849a35319db4dCAS | 24178390PubMed |

Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications 4, 1713
Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants.Crossref | GoogleScholarGoogle Scholar | 23591880PubMed |

Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America 111, 6092–6097.
Sugar demand, not auxin, is the initial regulator of apical dominance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlWksbY%3D&md5=0598de89d12f0028c1c79b9ab735ff66CAS | 24711430PubMed |

Matsoukas IG (2014) Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Frontiers in Plant Science 5, 147

McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM, Coates S, Purcell PC, Tiessen A, Geigenberger P, Halford NG (2006) Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnology Journal 4, 409–418.
Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslKnsLg%3D&md5=1a9a0f8c42b5bc7b8520097da7b4d9d6CAS | 17177806PubMed |

Minchin PEH, McNaughton GS (1987) Xylem transport of recently fixed carbon with lupin. Australian Journal of Plant Physiology 14, 325–329.

Minchin PEH, Thorpe MR, Farrar JF (1994) Short-term control of root: shoot partitioning. Journal of Experimental Botany 45, 615–622.
Short-term control of root: shoot partitioning.Crossref | GoogleScholarGoogle Scholar |

Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4, e4502
Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.Crossref | GoogleScholarGoogle Scholar | 19223973PubMed |

Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. The Plant Cell 16, 2433–2447.
Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1.Crossref | GoogleScholarGoogle Scholar | 15319483PubMed |

Noiraud N, Maurousset L, Lemoine RM (2001) Transport of polyols in higher plants. Plant Physiology and Biochemistry 39, 717–728.
Transport of polyols in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVKqsrc%3D&md5=bf42c35e35e066c4cb61f1955aac886bCAS |

Notaguchi M, Okamoto S (2015) Dynamics of long-distance signaling via plant vascular tissues. Frontiers in Plant Science 6, 161
Dynamics of long-distance signaling via plant vascular tissues.Crossref | GoogleScholarGoogle Scholar | 25852714PubMed |

Osorio S, Ruan YL, Fernie AR (2014) An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science 5, 516
An update on source-to-sink carbon partitioning in tomato.Crossref | GoogleScholarGoogle Scholar | 25339963PubMed |

Page ER, Liu W, Cerrudo D, Lee EA, Swanton CJ (2011) Shade avoidance influences stress tolerance in maize. Weed Science 59, 326–334.
Shade avoidance influences stress tolerance in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWqtro%3D&md5=f24ba2168371f52b435949df7a45cb99CAS |

Palenchar PM, Kouranov A, Lejay LV, Coruzzi GM (2004) Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biology 5, R91
Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants.Crossref | GoogleScholarGoogle Scholar | 15535867PubMed |

Palmer WM, Ru L, Jin Y, Patrick JW, Ruan Y-L (2015) Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements. Molecular Plant 8, 315–328.
Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtValtrk%3D&md5=77998e34c70afab4fbc242cf382c644bCAS | 25680776PubMed |

Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507, 68–72.
Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Gntrs%3D&md5=8ead1f3e035d391b61da6b93dcf0748cCAS | 24572366PubMed |

Patrick JW (2013) Fundamentals of phloem transport physiology. In ‘Phloem: molecular cell biology, systemic communication, biotic interactions’. (Eds GA Thompson, AJE van Bel) pp. 30–59. (Wiley-Blackwell Publishing: London)

Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. OMICS: A Journal of Integrative Biology 15, 893–901.
Omics of root-to-shoot signaling under salt stress and water deficit.Crossref | GoogleScholarGoogle Scholar | 22136663PubMed |

Puig J, Pauluzzi G, Guiderdoni E, Gantet P (2012) Regulation of shoot and root development through mutual signalling. Molecular Plant 5, 974–983.
Regulation of shoot and root development through mutual signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKlu7fJ&md5=643ae6887120f5c7d32e9e6bbde022b6CAS | 22628542PubMed |

Reda M (2015) Response of nitrate reductase activity and NIA genes expression in roots of Arabidopsis hxk1 mutant treated with selected carbon and nitrogen metabolites. Plant Science 230, 51–58.
Response of nitrate reductase activity and NIA genes expression in roots of Arabidopsis hxk1 mutant treated with selected carbon and nitrogen metabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGksrbK&md5=b906433b7e552da10c666d539041754eCAS | 25480007PubMed |

Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences of the United States of America 106, 14162–14167.
A comprehensive picture of phloem loading strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWksLvL&md5=23d85eea329306fbb2e0cd76d5481a8aCAS | 19666555PubMed |

Ruan Y-L (2012) Signaling roles of sucrose metabolism in plant development. Molecular Plant 5, 763–765.
Signaling roles of sucrose metabolism in plant development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSlsb7E&md5=f14fc752b45d6dff4f8565a3e1d7fd9fCAS | 22532605PubMed |

Ruan Y-L (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65, 33–67.
Sucrose metabolism: gateway to diverse carbon use and sugar signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhtrrI&md5=26a26cfcc7e6e682ba6a62f77f7637e4CAS | 24579990PubMed |

Ruan Y-L, Patrick JW, Brady CJ (1996) The composition of apoplastic fluid recovered from intact developing tomato fruit. Australian Journal of Plant Physiology 23, 9–13.
The composition of apoplastic fluid recovered from intact developing tomato fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhslanur4%3D&md5=9c94a8082be98e0658fd9c83a692aec1CAS |

Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. The Plant Cell 21, 3567–3584.
Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWqsQ%3D%3D&md5=fde842939b34881eb69f0d0f8de07d01CAS | 19933203PubMed |

Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the United States of America 108, 18524–18529.
Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFymu7bO&md5=953b28d40d7baa7ffc910ee58a29630fCAS | 22025711PubMed |

Ruffel S, Gojon A, Lejay L (2014) Signal interactions in the regulation of root nitrate uptake. Journal of Experimental Botany 65, 5509–5517.
Signal interactions in the regulation of root nitrate uptake.Crossref | GoogleScholarGoogle Scholar | 25165146PubMed |

Sairanen I, Novák O, Pencík A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. The Plant Cell 24, 4907–4916.
Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVKkt78%3D&md5=085cc47c4b0d43d8b328b3d4537f391bCAS | 23209113PubMed |

Salisbury FJ, Hall A, Grierson CS, Halliday KJ (2007) Phytochrome co-ordinates Arabidopsis shoot and root development. The Plant Journal 50, 429–438.
Phytochrome co-ordinates Arabidopsis shoot and root development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVWms74%3D&md5=9100bb2081e43cf96e221e505e775bfeCAS | 17419844PubMed |

Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J (2012) COP1 mediates the co-ordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139, 3402–3412.
COP1 mediates the co-ordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGru7%2FJ&md5=dd8389dfdc880c58430bdab9a0188bfaCAS | 22912415PubMed |

Sato T, Maekawa S, Yasuda S, Domeki Y, Sueyoshi K, Fujiwara M, Fukao Y, Goto DB, Yamaguchi J (2011) Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. The Plant Journal 68, 137–146.
Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSis73K&md5=6c8880ec21c6e16ff91af0f39aed6aa8CAS | 21668537PubMed |

Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. Journal of Experimental Botany 52, 1991–1997.
The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Wkt78%3D&md5=c00e685666f6b039035c7763a899459dCAS | 11559734PubMed |

Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends in Plant Science 13, 281–287.
Chemical root to shoot signaling under drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1artbg%3D&md5=55a831cd311a0f98650a93f677f7a0a6CAS | 18467158PubMed |

Schill V, Hartung W, Orthen B, Weisenseel MH (1996) The xylem sap of maple (Acer platanoides) trees-sap obtained by a novel method shows changes with season and height. Journal of Experimental Botany 47, 123–133.
The xylem sap of maple (Acer platanoides) trees-sap obtained by a novel method shows changes with season and height.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhtlajtb0%3D&md5=5d72aa1bb092aa85b29eafa45330c04aCAS |

Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Overexpression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant, Cell & Environment 32, 271–285.
Overexpression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVKlsL0%3D&md5=66b4a8485d6778034ca0a7505af5bbc5CAS |

Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell & Environment 34, 514–524.
Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOgtr4%3D&md5=63a1fd0ed5979ed1342c4f2008fe2316CAS |

Secchi F, Zwieniecki MA (2012) Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling. Plant Physiology 160, 955–964.
Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFaksbbF&md5=77386eda5cc2571dc6b8e1ec68ded577CAS | 22837359PubMed |

Shibuya N, Minami E (2001) Oligosaccharide signaling for defense responses in plant. Physiological and Molecular Plant Pathology 59, 223–233.
Oligosaccharide signaling for defense responses in plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovV2mt78%3D&md5=1e1eb3cce18815c13d6f49799600bc2bCAS |

Singh M, Gupta A, Laxmi A (2014) Glucose control of root growth direction in Arabidopsis thaliana. Journal of Experimental Botany 65, 2981–2993.
Glucose control of root growth direction in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 24719453PubMed |

Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. Journal of Experimental Botany 51, 1627–1634.
Hormonal changes induced by partial rootzone drying of irrigated grapevine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt12ju7o%3D&md5=35d3f316c9f237252ec2d6a30827dac4CAS | 11006312PubMed |

Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73–77.
Crystal structure of the plant dual-affinity nitrate transporter NRT1.1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Gnurc%3D&md5=625ba5540f93a3af1e3b2da4874395a3CAS | 24572362PubMed |

Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346.
Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslChtb3O&md5=f3fa13f73cfc5ab46f6be8366121a023CAS | 25324386PubMed |

Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant & Cell Physiology 42, 85–93.
Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1CntA%3D%3D&md5=7b01a5fdd93484b2510d11d7af9e5963CAS |

Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Journal of Experimental Botany 53, 971–977.
Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSnur4%3D&md5=649f1d829dccc19925e7cba2b6973670CAS | 11912239PubMed |

Toroser D, Plaut Z, Huber SC (2000) Regulation of a plant SNF1- related protein kinase by glucose-6-phosphate. Plant Physiology 123, 403–412.
Regulation of a plant SNF1- related protein kinase by glucose-6-phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFemsLs%3D&md5=c3dbf868708003b78f76188c81530824CAS | 10806257PubMed |

Tsai AY, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Frontiers in Plant Science 5, 119
Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture.Crossref | GoogleScholarGoogle Scholar | 24744765PubMed |

Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annual Review of Plant Biology 60, 207–221.
Phloem transport: cellular pathways and molecular trafficking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFGls7s%3D&md5=4f94106f794c94852791fdcef9c13bb0CAS | 19025382PubMed |

van Bel AJ (2003) Transport phloem: low profile, high impact. Plant Physiology 131, 1509–1510.

van Bel AJE, Hess PH (2008) Hexoses as phloem transport sugars: the end of a dogma? Journal of Experimental Botany 59, 261–272.
Hexoses as phloem transport sugars: the end of a dogma?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamtLw%3D&md5=4864f1c7724d1c0dbc6f09f75bee3286CAS |

Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signaling. Frontiers in Plant Science 4, 163
Regulation of cell division and expansion by sugar and auxin signaling.Crossref | GoogleScholarGoogle Scholar | 23755057PubMed |

Wang YY, Tsay YF (2011) Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. The Plant Cell 23, 1945–1957.
Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWqsbw%3D&md5=b4c61f5d6de358be0bbd759afae6ababCAS | 21571952PubMed |

Weigelt K, Kuster H, Rutten T, Fait A, Fernie AR, Miersch O, Wasternack C, Emery RJ, Desel C, Hosein F, Müller M, Saalbach I, Weber H (2009) ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses. Plant Physiology 149, 395–411.
ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqt7k%3D&md5=73c6a11a41659480eb4c05c1bacaee46CAS | 18987213PubMed |

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15, 2532–2550.
Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Ortbw%3D&md5=682cb695ccc3beb178c741e89254f282CAS | 14555694PubMed |

Werner T, Holst K, Pors Y, Guivarc’h A, Mustroph A, Chriqui D, Grimm B, Schmülling T (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. Journal of Experimental Botany 59, 2659–2672.
Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Witr8%3D&md5=933089dca36c05031de86b0d34196783CAS | 18515826PubMed |

Widiez T, El Kafafi el S, Girin T, Berr A, Ruffel S, Krouk G, Vayssières A, Shen W-H, Coruzzi GM, Gojon A, Lepetit M (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3 – uptake is associated with changes in histone methylation. Proceedings of the National Academy of Sciences of the United States of America 108, 13329–13334.
High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3 uptake is associated with changes in histone methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGqsLfL&md5=503f0d40d9d0fc7bb57ec84b01d10b10CAS | 21788519PubMed |

Windt CW, Gerkema E, Van As H (2009) Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study. Plant Physiology 151, 830–842.
Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSjsr%2FP&md5=05cfe5dd525bf47d1de0ee53618d4980CAS | 19710234PubMed |

Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186.
Glucose–TOR signalling reprograms the transcriptome and activates meristems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFOksbw%3D&md5=60cbb16d70f68b58a66dce4e2b63f6deCAS | 23542588PubMed |

Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America 101, 7833–7838.
Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOksrk%3D&md5=d6ffc0e3bb305b6452e3fc0747a7dce6CAS | 15136740PubMed |

Yu S, Lian H, Wang JW (2015) Plant development transitions: the role of microRNAs and sugars. Current Opinion in Plant Biology 27, 1–7.
Plant development transitions: the role of microRNAs and sugars.Crossref | GoogleScholarGoogle Scholar | 26042537PubMed |

Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiology 149, 1860–1871.
Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Wgu7o%3D&md5=f523131495d839b187e687c6683f9860CAS | 19193861PubMed |

Zheng ZL (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling & Behavior 4, 584–591.
Carbon and nitrogen nutrient balance signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGmsbjF&md5=f47574d911bc431eb5ec2380707eff68CAS |