Dr Honghong Wu (Huazhong Agricultural University, PR China)
Functional Plant Biology
Volume 50 Number 11 2023
Special IssueNanoparticles and plant adaptations to abiotic stresses
Dr Honghong Wu (Huazhong Agricultural University, PR China)
Nanobiotechnology is a powerful tool to improve plant stress tolerance.
FP22092Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions
Abiotic stress, due to both natural and anthropogenic activities, alters the soil–plant–atmosphere continuum, which adversely affects crop growth, development, and productivity. Abiotic stresses, including heavy metals, salts, and temperature extremes, cause a significant reduction in crop yields worldwide. There is an imperative need for environmentally friendly techniques to combat these stresses and improve agricultural sustainability. Nanomaterials, both nanoscale materials and nanocomposites, are the magic bullets showing the ability to alleviate the constraints associated with environmental stresses.
FP23068Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries
Reactive oxygen species metabolism is detailed under normal versus stressed conditions, elaborating on the modes and process of uptake and translocation of nanoparticles. The two-fold regulatory roles of nanoparticles are discussed. A molecular dissection of the role of nanoparticles is presented, in controlling transcriptomic expression and modulating molecular crosstalk with other growth regulators, ions, reactive nitrogen species and other signalling molecules. Potential roles and regulation of nanoparticles and their utility for green synthesis within a sustainable agricultural industry are explored.
FP23021Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview
Heavy metals and metalloids pollution in the environment, particularly in soils, has gained increased attention globally. Zn2+ is a crucial nutrient for tolerance against heavy metals. This review illustrates the vital role of Zn2+ and nano Zn in plants and explains the knowledge of their impact in alleviating HMMs toxicity in plants.
This study analysed the effect of mesoporous silica nanoparticles and simulated drought conditions on Arabidopsis seed germination and seedling growth. The plants were subjected to drought through the use of the osmolyte, polyethylene glycol. Treatment with nanoparticles enhanced seed gemination and plant growth under both non-stressed and drought conditions. We propose that these nanoparticles provide an alternative approach for increased drought tolerance through making water and nutrients more readily available.
FP22274 Abstract | FP22274 Full Text | FP22274PDF (5.3 MB) | FP22274Supplementary Material (997 KB) Open Access Article
FP23036Silver nanoparticles protect tillering in drought-stressed wheat by improving leaf water relations and physiological functioning
Wheat (Triticum aestivum) crops suffer significant grain yield losses when water supplies are affected during the early developmental phases. This study shows varying levels of drought stress impaired carbon assimilation, tiller formation and final grain yield of wheat genotypes. In contrast, exogenously applied silver nanoparticles (AgNPs) restored plant growth and grain yield formation, suggesting their potential to protect wheat crops from drought-induced injury.
FP23036 Abstract | FP23036 Full Text | FP23036PDF (1.6 MB) Open Access Article
FP22140Efficacy of priming wheat (Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance
Approximately 33% of the arable land around the world, including Pakistan, is vulnerable to drought, affecting the yield and productivity of cereal crops. It is hypothesised that benzothiazine (BTh) could alleviate abiotic stress caused by drought through salicylic acid accumulation in plants. We found that wheat (Triticum aestivum L.) seeds primed with BTh derivatives could alleviate oxidative stress by increasing antioxidants, proline, soluble sugars and increasing fluxes of essential nutrients under drought stress.
FP23085Effects of iron oxide nanoparticles (Fe3O4) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum)
Soil salinity significantly affects productivity of agricultural systems. This work shows that plant treatment with iron oxide nanoparticles (Fe3O4 NPs) may be a promising solution for reducing the negative impact of soil salinity on plant performance. It is concluded that Fe3O4 NPs can enhance plant growth by improving photosynthetic characteristics, antioxidant balance and the availability of iron and manganese ions, under conditions of soil salinisation.
FP23085 Abstract | FP23085 Full Text | FP23085PDF (1.6 MB) Open Access Article
Salt toxicity negatively affected physiochemical activities and growth of bottle gourd, Lagenaria siceraria L. Application of zinc oxide nanoparticless mitigated salt stress and enhanced biochemical stress-markers and antioxidant activity of plants. Plants treated with zinc oxide nanoparticles exhibited improved growth and reduced salt toxicity.
FP22161Facile one-step synthesis of gold nanoparticles using Viscum album and evaluation of their antibacterial potential
Nanostructure gold nanoparticles (Au NPs) are biological active materialsthat has gained significant interest in the field of biomedicine. We investigated a novel and cost-effective way to synthesise Au NPs from mediated Viscum album Linn plant extract, where the plant metabolites act as stabilising and reducing agents. The mediated V. album plant extracts and synthesised Au NPs were screened against gram-positive and gram-negative (Enterobacter, Salmonella typhi, Escherichiacoli and Bacillus subtilis) bacterial strains, confirming their antibacterial potential.