NtDHS regulates leaf senescence by modulating gene translation in Nicotiana tabacum
Junping Gao A # , Ying Wang B # , Xinxi He A , Long Chen A , Shuaibin Wang A , Xinyao Zhang A , Sirui Zhu B , Xiaoxu Li A , Xiaonian Yang A , Wenxuan Pu A * and Yuanyuan Li
A
B
# These authors contributed equally to this paper
Handling Editor: Peter Bozhkov
Abstract
The biochemical and transcriptional regulatory mechanisms of chlorophyll metabolism have been extensively studied, but the translational regulatory mechanisms remain poorly understood. In this study, we found that NtDHS1 deficiency in N. tabacum resulted in smaller leaves and increased leaf chlorophyll content. Protein content determination experiments revealed that the global protein synthesis of the Ntdhs1 mutant was decreased. A ribosome profiling sequence (Ribo-seq) assay showed that the translation level of genes related to cell growth was significantly reduced, while the translation level of chlorophyll metabolism related genes was significantly increased in Ntdhs1 mutant. Biochemical analysis further demonstrated that NtDHS interacts with the translation initiation factor NteIF5A. Moreover, the Nteif5a1 mutant exhibited phenotypes similar to the Ntdhs1 mutant, including a reduced translation level of cell growth related genes and increased translation level of chlorophyll metabolism related genes. Our studies suggest that the NtDHS–NteIF5A complex regulates leaf senescence by modulating the translation of specific genes.
Keywords: chlorophyll, DEOXYHYPUSINE SYNTHASE, leaf senescence, Nicotiana tabacum, NteIF5A, protein synthesis, Rio-seq, translation.
References
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37, W202-W208.
| Crossref | Google Scholar | PubMed |
Cano VSP, Jeon GA, Johansson HE, Henderson CA, Park J-H, Valentini SR, Hershey JWB, Park MH (2008) Mutational analyses of human eIF5A-1 – identification of amino acid residues critical for eIF5A activity and hypusine modification. The FEBS Journal 275(1), 44-58.
| Crossref | Google Scholar | PubMed |
Chattopadhyay MK, Park MH, Tabor H (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proceedings of the National Academy of Sciences 105(18), 6554-6559.
| Crossref | Google Scholar | PubMed |
Chen J, Zhu X, Ren J, Qiu K, Li Z, Xie Z, Gao J, Zhou X, Kuai B (2017) Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis. Plant Physiology 173(3), 1881-1891.
| Crossref | Google Scholar | PubMed |
D’Agostino M, Simonetti A, Motta S, Wolff P, Romagnoli A, Piccinini A, Spinozzi F, Di Marino D, La Teana A, Ennifar E (2024) Crystal structure of archaeal IF5A-DHS complex reveals insights into the hypusination mechanism. Structure 32(7), 878-888.e4.
| Crossref | Google Scholar |
Dias CAO, Cano VSP, Rangel SM, Apponi LH, Frigieri MC, Muniz JRC, Garcia W, Park MH, Garratt RC, Zanelli CF, Valentini SR (2008) Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis. The FEBS Journal 275, 1874-1888.
| Crossref | Google Scholar | PubMed |
Dong C, Wang Q, Wang Y, Qin L, Shi Y, Wang X, Wang R (2022) NtDREB-1BL1 enhances carotenoid biosynthesis by regulating phytoene synthase in Nicotiana tabacum. Genes 13(7), 1134.
| Crossref | Google Scholar |
Duguay J, Jamal S, Liu Z, Wang T-W, Thompson JE (2007) Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. Journal of Plant Physiology 164(4), 408-420.
| Crossref | Google Scholar | PubMed |
Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 18, 448.
| Crossref | Google Scholar | PubMed |
Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology 113(2), 313-319.
| Crossref | Google Scholar | PubMed |
Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, Zhou X, Kuai B (2016) ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant 9(9), 1272-1285.
| Crossref | Google Scholar | PubMed |
Gregio APB, Cano VPS, Avaca JS, Valentini SR, Zanelli CF (2009) eIF5A has a function in the elongation step of translation in yeast. Biochemical and Biophysical Research Communications 380, 785-790.
| Crossref | Google Scholar |
Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H (2017) Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Research 200, 58-70.
| Crossref | Google Scholar |
Guo J, Li K, Jin L, Xu R, Miao K, Yang F, Qi C, Zhang L, Botella JR, Wang R, Miao Y (2018) A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants. Plant Methods 14, 40.
| Crossref | Google Scholar | PubMed |
Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, Lim Y, Okuyama K, Soneji S, Karlsson G, Hansson J, Jönsson G, Lund AH, Sigvardsson M, Hellström-Lindberg E, Hsieh AC, Bellodi C (2018) Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173(5), 1204-1216.e26.
| Crossref | Google Scholar | PubMed |
Hopkins MT, Lampi Y, Wang T-W, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiology 148(1), 479-489.
| Crossref | Google Scholar | PubMed |
Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009) Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. Journal of Biological Chemistry 284(26), 17449-17456.
| Crossref | Google Scholar | PubMed |
Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annual Review of Plant Biology 57, 55-77.
| Crossref | Google Scholar | PubMed |
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P (2017) Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 18, 496.
| Crossref | Google Scholar | PubMed |
Kang HA, Hershey JW (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. Journal of Biological Chemistry 269(6), 3934-3940.
| Crossref | Google Scholar | PubMed |
Kim HI, Schultz CR, Chandramouli GVR, Geerts D, Risinger JI, Bachmann AS (2022) Pharmacological targeting of polyamine and hypusine biosynthesis reduces tumour activity of endometrial cancer. Journal of Drug Targeting 30(6), 623-633.
| Crossref | Google Scholar | PubMed |
Le NT, Tran HT, Bui TP, Nguyen GT, Van Nguyen D, Ta DT, Trinh DD, Molnar A, Pham NB, Chu HH, Do PT (2022) Simultaneously induced mutations in eIF4E genes by CRISPR/Cas9 enhance PVY resistance in tobacco. Scientific Reports 12(1), 14627.
| Crossref | Google Scholar | PubMed |
Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant & Cell Physiology 52, 65-62.
| Crossref | Google Scholar |
Li H, Lin F, Wang G, Jing R, Zheng Q, Li B, Li Z (2012a) Quantitative trait loci mapping of dark-induced senescence in winter wheat (Triticum aestivum). Journal of Integrative Plant Biology 54(1), 33-44.
| Crossref | Google Scholar | PubMed |
Li Z, Peng J, Wen X, Guo H (2012b) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. Journal of Integrative Plant Biology 54(8), 526-539.
| Crossref | Google Scholar | PubMed |
Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annual Review of Plant Biology 58, 115-136.
| Crossref | Google Scholar | PubMed |
Liu J, Chang X, Ding B, Zhong S, Peng L, Wei Q, Meng J, Yu Y (2019) PhDHS is involved in chloroplast development in petunia. Frontiers in Plant Science 10, 284.
| Crossref | Google Scholar | PubMed |
Liu J, Liao W, Nie B, Zhang J, Xu W (2021) OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. The Plant Journal 106(3), 706-719.
| Crossref | Google Scholar | PubMed |
Liu F, Xi M, Liu T, Wu X, Ju L, Wang D (2023) The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops 1, 100005.
| Crossref | Google Scholar |
Ma F, Liu Z, Wang T-W, Hopkins MT, Peterson CA, Thompson JE (2010) Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant, Cell & Environment 33(10), 1682-1696.
| Crossref | Google Scholar | PubMed |
Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochemical & Photobiological Sciences 7, 1131-1149.
| Crossref | Google Scholar | PubMed |
Ning L, Wang L, Zhang H, Jiao X, Chen D (2020) Eukaryotic translation initiation factor 5A in the pathogenesis of cancers. Oncology Letters 20(4), 1.
| Crossref | Google Scholar |
Nishimura K, Lee SB, Park JH, Park MH (2012) Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids 42, 703-710.
| Crossref | Google Scholar | PubMed |
Ober D, Gibas L, Witte L, Hartmann T (2003) Evidence for general occurrence of homospermidine in plants and its supposed origin as by-product of deoxyhypusine synthase. Phytochemistry 62(3), 339-344.
| Crossref | Google Scholar | PubMed |
Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Scientific Reports 6, 23609.
| Crossref | Google Scholar | PubMed |
Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences 112, 8529-8536.
| Google Scholar |
Pagnussat GC, Yu H-J, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie L-F, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132(3), 603-614.
| Crossref | Google Scholar | PubMed |
Pällmann N, Braig M, Sievert H, Preukschas M, Hermans-Borgmeyer I, Schweizer M, Nagel CH, Neumann M, Wild P, Haralambieva E, Hagel C, Bokemeyer C, Hauber J, Balabanov S (2015) Biological relevance and therapeutic potential of the hypusine modification system. Journal of Biological Chemistry 290(30), 18343-18360.
| Crossref | Google Scholar | PubMed |
Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491-500.
| Crossref | Google Scholar | PubMed |
Parkash J, Vaidya T, Kirti S, Dutt S (2014) Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid. Gene 542(1), 1-7.
| Crossref | Google Scholar | PubMed |
Qiu K, Li Z, Yang Z, Chen J, Wu S, Zhu X, Gao S, Gao J, Ren G, Kuai B, Zhou X (2015) EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genetics 11(7), e1005399.
| Crossref | Google Scholar | PubMed |
Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiology 144(3), 1429-1441.
| Crossref | Google Scholar | PubMed |
Ren G, Zhou Q, Wu S, Zhang Y, Zhang L, Huang J, Sun Z, Kuai B (2010) Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Journal of Integrative Plant Biology 52(5), 496-504.
| Crossref | Google Scholar | PubMed |
Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118-121.
| Crossref | Google Scholar | PubMed |
Sakuraba Y, Jeong J, Kang M-Y, Kim J, Paek N-C, Choi G (2014) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications 5, 4636.
| Crossref | Google Scholar | PubMed |
Sakuraba Y, Han SH, Lee SH, Hortensteiner S, Paek NC (2016) Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. Plant Cell Reports 35, 155-166.
| Crossref | Google Scholar | PubMed |
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell 21(3), 767-785.
| Crossref | Google Scholar | PubMed |
Seoane R, Lama-Díaz T, Romero AM, El Motiam A, Martínez-Férriz A, Vidal S, Bouzaher YH, Blanquer M, Tolosa RM, Castillo Mewa J, Rodríguez MS, García-Sastre A, Xirodimas D, Sutherland JD, Barrio R, Alepuz P, Blanco MG, Farràs R, Rivas C (2024) SUMOylation modulates eIF5A activities in both yeast and pancreatic ductal adenocarcinoma cells. Cellular & Molecular Biology Letters 29, 15.
| Crossref | Google Scholar | PubMed |
Song W, Wei F, Gao S, Dong C, Hao J, Jin L, Li F, Wei P, Guo J, Wang R (2022) Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum. BMC Plant Biology 22, 252.
| Crossref | Google Scholar | PubMed |
Tan J, Zhang T, Xia XS, Yan M, Li FF, Sang X, He G, Ling Y (2019) Fine mapping of a novel yellow-green leaf 14 (ygl14) mutant in rice. Euphytica 215, 100.
| Crossref | Google Scholar |
Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Current Opinion in Plant Biology 9(3), 248-255.
| Crossref | Google Scholar | PubMed |
Tauc M, Cougnon M, Carcy R, Melis N, Hauet T, Pellerin L, Blondeau N, Pisani DF (2021) The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell & Bioscience 11, 219.
| Crossref | Google Scholar | PubMed |
Wang T-W, Lu L, Wang D, Thompson JE (2001) Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato. Journal of Biological Chemistry 276(20), 17541-17549.
| Crossref | Google Scholar | PubMed |
Wang TW, Lu L, Zhang C-G, Taylor C, Thompson JE (2003) Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Molecular Biology 52, 1223-1235.
| Crossref | Google Scholar | PubMed |
Wang T-W, Zhang C-G, Wu W, Nowack LM, Madey E, Thompson JE (2005) Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiology 138(3), 1372-1382.
| Crossref | Google Scholar | PubMed |
Wątor E, Wilk P, Biela A, Rawski M, Zak KM, Steinchen W, Bange G, Glatt S, Grudnik P (2023) Cryo-EM structure of human eIF5A-DHS complex reveals the molecular basis of hypusination-associated neurodegenerative disorders. Nature Communications 14, 1698.
| Crossref | Google Scholar | PubMed |
Woo HR, Kim HJ, Lim PO, Nam HG (2019) Leaf senescence: systems and dynamics aspects. Annual Review of Plant Biology 70, 347-376.
| Crossref | Google Scholar | PubMed |
Wu L, Chen X, Zhang P, Yan S, Zhang T, Li Y (2024) TON1 recruiting motif 21 positively regulates the flavonoid metabolic pathway at the translational level in Arabidopsis thaliana. Planta 259, 65.
| Crossref | Google Scholar | PubMed |
Xu J, Zhang B, Jiang C, Ming F (2011) RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. Plant Molecular Biology 75, 167-178.
| Crossref | Google Scholar | PubMed |
Zhang J, Li X, Liu X, Tian F, Zeng W, Xi X, Lin Y (2018) EIF5A1 promotes epithelial ovarian cancer proliferation and progression. Biomedicine & Pharmacotherapy 100, 168-175.
| Crossref | Google Scholar | PubMed |
Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiology 150(1), 167-177.
| Crossref | Google Scholar | PubMed |
Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S, Zhou X, Kuai B (2015) Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. The Plant Journal 84(3), 597-610.
| Crossref | Google Scholar | PubMed |
Zhu S, Estévez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, Guo H, Yu F (2020) The RALF1–FERONIA complex phosphorylates eIF4E1 to promote protein synthesis and polar root hair growth. Molecular Plant 13(5), 698-716.
| Crossref | Google Scholar | PubMed |