Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana

Dorothea Bartels A B and Challabathula Dinakar A
+ Author Affiliations
- Author Affiliations

A Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.

B Corresponding author. Email: dbartels@uni-bonn.de

This paper originates from a presentation at the COST WG2 MeetingPutting halophytes to workgenetics, biochemistry and physiologyHannover, Germany, 2831 August 2012.

Functional Plant Biology 40(9) 819-831 https://doi.org/10.1071/FP12299
Submitted: 9 October 2012  Accepted: 27 February 2013   Published: 2 April 2013

Abstract

Salinity is one of the major abiotic stress factors that drastically reduces agricultural productivity. In natural environments salinity often occurs together with other stresses such as dehydration, light stress or high temperature. Plants cope with ionic stress, dehydration and osmotic stress caused by high salinity through a variety of mechanisms at different levels involving physiological, biochemical and molecular processes. Halophytic plants exist successfully in stressful saline environments, but most of the terrestrial plants including all crop plants are glycophytes with varying levels of salt tolerance. An array of physiological, structural and biochemical adaptations in halophytes make them suitable models to study the molecular mechanisms associated with salinity tolerance. Comparative analysis of plants that differ in their abilities to tolerate salinity will aid in better understanding the phenomenon of salinity tolerance. The halophyte Thellungiella salsuginea has been used as a model for studying plant salt tolerance. In this review, T. salsuginea and the glycophyte Arabidopsis thaliana are compared with regards to their biochemical, physiological and molecular responses to salinity. In addition recent developments are presented for improvement of salinity tolerance in glycophytic plants using genes from halophytes.

Additional keywords: dehydration, glycophytes, halophytes, salinity, Thellungiella.


References

Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signaling & Behavior 5, 369–374.
Antioxidative defense under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFemu73M&md5=5008299e45a7ef77bba413c2fe880c01CAS |

Agarwal PK, Shukla PS, Gupta K, Jha B (2012) Bioengineering for salinity tolerance in plants: state of the art. Molecular Biotechnology
Bioengineering for salinity tolerance in plants: state of the art.Crossref | GoogleScholarGoogle Scholar |

Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Molecular Plant 2, 3–12.
Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2msbk%3D&md5=1ab76ac13e1dad8d7821e44289ab1f50CAS |

Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiology 138, 127–130.
Abiotic stress and plant genome evolution. Search for new models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks12iur8%3D&md5=dbd96b44a7312bf5be37a5a1f58cb792CAS |

Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258.
Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Sju7s%3D&md5=b02bb3a0e26a6d6e23d1e4d4dc567855CAS |

Asada K (1997) The role of ascorbate peroxidase and monohydroascorbate reductase in H2O2 scavenging in plants. In ‘Oxidative stress and the molecular biology of antioxidant defenses’. (Ed. JG Scandalios) pp. 353–373. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York)

Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Molecular Biology 75, 179–191.
Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2gsbjF&md5=988d52366c8fe8fec33a9620e6316672CAS |

Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances 27, 744–752.
Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CqtbjJ&md5=b314aec92fcade60e7c4332a8952a30aCAS |

Aslam R, Bostan N, Nabgha-e-Amen , Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. Journal of Medicinal Plants Research 5, 7108–7118.

Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24, 23–58.
Drought and salt tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12ns7c%3D&md5=aa8bab8304793b0e6dee077dad09bb65CAS |

Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu J-K (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Molecular and Cellular Biology 27, 7781–7790.
SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmsr3N&md5=3b7eb318a094ae42550542e796a1f26dCAS |

Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiology 78, 163–167.
Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktVags74%3D&md5=6e3c70c0fe60236249f64ca9dc806174CAS |

Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochimica et Biophysica Acta 1465, 140–151.
Sodium transport in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wgtrs%3D&md5=0bc2ce62783cc3db8047740db60cda3dCAS |

Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14, 89–97.
Strategies for engineering water-stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsleqtLo%3D&md5=b606a0c22e6013e9a80dca46f1d2b106CAS |

Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell, Tissue and Organ Culture 73, 101–115.
Developing salt tolerant plants in a new century: a molecular biology approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Kitrs%3D&md5=add5cb71cd16023b1a3f469a00bb4cb1CAS |

Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiology 87, 547–550.
Mechanisms of salinity tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVOlt70%3D&md5=99b04d0af46e7d767cb00e6e9e7bbee3CAS |

Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Reports 26, 237–245.
Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVagurg%3D&md5=4fcb27eede70c60d1d059010e09b2426CAS |

Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Science 45, 437–448.
Understanding and improving salt tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVGjur0%3D&md5=12a988d4df27525d140e36680e29c349CAS |

Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressnan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics 43, 913–918.
The genome of the extremophile crucifer Thellungiella parvula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOltLo%3D&md5=4a9abf9a293e9aca54fe119071b17588CAS |

Dat JF, Vandenabeele E, Vranova M, Mantagu V, Inzé D, Breusegem FV (2000) Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57, 779–795.
Dual action of the active oxygen species during plant stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFyisrk%3D&md5=6d5f355e09b48e75470bf67a0e38b8c7CAS |

Duan XG, Yang AF, Gao F, Zhang SL, Zhang JR (2007) Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232, 87–95.
Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVOrtA%3D%3D&md5=d0c0d0072bd22e91a4df42b10c964137CAS |

Eimer M (2004) Transgenic drought and salt tolerant plants. Genetic Engineering Newsletter, Special Issue 15, 1–14.

El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy 22, 243–253.
Evaluating salt tolerance of wheat genotypes using multiple parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSkurc%3D&md5=83e3a64ca55fed7f345c14a2acf262f6CAS |

Ellouzi H, Hamed KB, Cela J, Munne-Bosch S, Abedlly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsos thaliana (glycophyte). Physiologia Plantarum 142, 128–143.
Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsos thaliana (glycophyte).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFeru7c%3D&md5=69bd9f4bf373c393d61d80b4a4d9a6caCAS |

Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225, 1255–1264.
Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWjs70%3D&md5=b4d1a9f8b5ae68d4ae61fe4a30b2d6afCAS |

Qui-Fang Z, Yuan LY, Hong PC, Ming LC, Shan WB (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Science 168, 423–430.
NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L.Crossref | GoogleScholarGoogle Scholar |

Flowers TJ (1985) Physiology of halophytes. Plant and Soil 89, 41–56.
Physiology of halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjtFKqsA%3D%3D&md5=b0bbfad6331284d412223456e3f7d42aCAS |

Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945–963.
Salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FE&md5=06dcabcbf1411c34a35d7aed78f04afbCAS |

Flowers TJ, Troke PF, Yeo AR (1977) The mechanisms of salt tolerance in halophytes. Annual Review of Plant Physiology 28, 89–121.
The mechanisms of salt tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksFSisb8%3D&md5=ab0a16957d0ffbee896436c71cd4eb84CAS |

Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quarterly Review of Biology 61, 313–337.
Halophytes.Crossref | GoogleScholarGoogle Scholar |

Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37, 604–612.
Evolution of halophytes: multiple origins of salt tolerance in land plants.Crossref | GoogleScholarGoogle Scholar |

Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochimica et Biophysica Acta 1446, 149–155.
Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVyrt7g%3D&md5=ce51074f9b0f41ca193f1f1b04e686a2CAS |

Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. Journal of Experimental Botany 55, 585–594.
Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSrtb0%3D&md5=c2301627d48ed006e388adff57f9b893CAS |

Gao F, Gao Q, Duan XG, Yue G, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. Journal of Experimental Botany 57, 3259–3270.
Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1ygt7k%3D&md5=7d159069d7d72856db8360b05afdd947CAS |

Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology 165, 588–599.
Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wgsr8%3D&md5=84ffa3a368021bbba2f88c11c41f0bdeCAS |

Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences 18, 227–255.
Salt tolerance and crop potential of halophytes.Crossref | GoogleScholarGoogle Scholar |

Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal 44, 826–839.
Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWltrbN&md5=620030b0bcdb8cf64087da8a830c4207CAS |

Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America 97, 3735–3740.
The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlajsrg%3D&md5=d0444e59225e38ccde9b65b8e3bb0f0cCAS |

Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51, 463–499.
Plant cellular and molecular responses to high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7s%3D&md5=c67a7b95a8761aa0d533df99ebe4cd38CAS |

Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt and drought stresses in plants. Molecular Biology Reports 39, 969–987.
Signal transduction during cold, salt and drought stresses in plants.Crossref | GoogleScholarGoogle Scholar |

Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress: a halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology 135, 1718–1737.
Salt cress: a halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsbg%3D&md5=85fddf093617d479c691d21b1d39e3d4CAS |

Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: roles in plant nutrition and signalling. FEBS Letters 584, 1982–1988.
Vacuolar ion channels: roles in plant nutrition and signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVarurY%3D&md5=417dadf6e930dffea6cc47fd4f93e49bCAS |

Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant Cell 12, 1667–1677.

Jithesh MN, Prashanth R, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics 85, 237–254.
Antioxidative response mechanisms in halophytes: their role in stress defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVCmtLc%3D&md5=8908bfb0fdcca87b70055646c8b649e5CAS |

Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell & Environment 29, 1220–1234.
Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVCqu7c%3D&md5=24219944b87a28842a228b43fab0c045CAS |

Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92, 1321–1329.
A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Clsr3L&md5=604d404d26e32925d3399e07db3aac72CAS |

Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell & Environment 34, 1291–1303.
ZmMKK4, a novel group C mitogen-activated protein kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOntbrL&md5=4bc91e9f47ece5d6992a9590f4ece0acCAS |

Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America 96, 4718–4723.
Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1ylt7Y%3D&md5=6e7c70b3e1596fa17a97ba0c7f5061b6CAS |

Li B, Wei AY, Song CX, Li N, Zhang JR (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal 6, 146–159.
Heterologous expression of the TsVP gene improves the drought resistance of maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKjtL8%3D&md5=d6be0c60de95aa9583536602698d63d3CAS |

Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant, Cell & Environment 35, 1582–1600.
HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKlsr3M&md5=ad29502fbbf884368eaee81c09095bf0CAS |

Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97, 3730–3734.
The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlajsrs%3D&md5=7f45bc9d5ba0e2a6be8d93874ca2fe57CAS |

Lugan R, Niogret MF, Leport L, Guegan JP, Larher FR, Savoure A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal 64, 215–229.
Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgtrfK&md5=51c344a2a0f1e2f91e770bd416f35462CAS |

M’rah S, Ouerghi Z, Eymery F, Rey P, Hajji M, Grignon C, Lachaal M (2007) Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. Journal of Plant Physiology 164, 375–384.
Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFSqtrk%3D&md5=ff042ef8a18a60e268f1a38c82663b16CAS |

Maeshima M (2001) Tonoplast transporters: organization and function. Annual Review of Plant Physiology and Plant Molecular Biology 52, 469–497.
Tonoplast transporters: organization and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWgsbo%3D&md5=ff1c76cd44b4067691eaf1240fe9dd10CAS |

Mansour MMF, Salama KHA, Al-Mutawa MM (2003) Transport proteins and salt tolerance in plants. Plant Science 164, 891–900.
Transport proteins and salt tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Clu7c%3D&md5=f7ac22be0fbb4898e07d9812bc680770CAS |

Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. The Plant Journal 51, 656–669.
Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSmtrvK&md5=49e7ea19f0a2196f74be857d5ad4a0eaCAS |

Mittova V, Tal M, Volokita M, Guy M (2003) Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell & Environment 26, 845–856.
Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Gnt7o%3D&md5=aa0d9c040e605396ebbe0908f63b5e73CAS |

Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants. International Journal of Botany 6, 136–143.
Biochemical mechanisms of salt tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aqu7vJ&md5=148462ccfc23589757403d861f02322cCAS |

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Comparative physiology of salt and water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslakurw%3D&md5=4b241e0ff1eba2f3fa3d1e323ab7e87aCAS |

Munns R (2005) Genes and salt tolerance: bringing them together. New Phytologist 167, 645–663.
Genes and salt tolerance: bringing them together.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGisbfP&md5=a2d23c6d5faa06931cb8a05ae3e289bcCAS |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=0ce1f7aad22c73fffb329d4603f0e836CAS |

Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30, 360–364.
Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOgu7w%3D&md5=7c1aaac749903736cdb6d4cad7aba404CAS |

Nah G, Pagliarulo CL, Mohr PG, Luo M, Sisneros N, Yu Y, Collura K, Currie J, Goicoechea JL, Wing RA, Schumaker KS (2009) Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics 94, 196–203.
Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFertrs%3D&md5=0d651e05462e6e3ab44b3e2725937b3cCAS |

Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiology 109, 735–742.

Oh DH, Gong Q, Ulanov A, Zhang Q, Li Y, Ma W, Yun DJ, Bressan RA, Bohnert HJ (2007) Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line. Journal of Integrative Plant Biology 49, 1484–1496.
Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WmsrzI&md5=307db74616d8aab75a8ee407106e76a4CAS |

Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiology 151, 210–222.
Loss of halophytism by interference with SOS1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjsbzL&md5=f96d00c79f5df2bb70c90152d4a4aa6eCAS |

Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiology 154, 1040–1052.
Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2nsbfP&md5=87279db9296b926d0fb9d036cc19ccbeCAS |

Ohta H (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters 532, 279–282.
Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlCqt7g%3D&md5=ce16824df7c03af74de7a3bd6a272281CAS |

Orsini F, D’Urzo MP, Inan G, Serra S, Oh DH, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun DJ, Bohnert HJ, Bressan RA, Maggio A (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. Journal of Experimental Botany 61, 3787–3798.
A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVert7jO&md5=52b5cc445808ee4af2c70aa3b840eb18CAS |

Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research 9, 2584–2599.
Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVKrur8%3D&md5=acb43941c8b68676f0da9f5da4a2b77dCAS |

Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60, 324–349.
Salt tolerance and salinity effects on plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKlt7nN&md5=352847041b71156aa498396b1d3f516aCAS |

Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A (2012) Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS ONE 7, e43501
Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSjsrnO&md5=ddabbfb57f44c8b21358b89805b8d1c7CAS |

Prashanth SR, Sadhasivam V, Parida A (2008) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research 17, 281–291.
Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSks74%3D&md5=0d86f634005d4e495b271e8eea5c32efCAS |

Qiu QS, Barkla BJ, Vera-Estrella R, Zhu JK, Schumaker KS (2003) Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiology 132, 1041–1052.
Na+/H+ exchange activity in the plasma membrane of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslertbY%3D&md5=a359344236258319840a296b82b00275CAS |

Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America 99, 9061–9066.
Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltF2hu70%3D&md5=eb6013cfb45bb5ecb1a0afb38f385d23CAS |

Rush DE, Epstein E (1976) Genotypic responses to salinity. Plant Physiology 57, 162–166.
Genotypic responses to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFymsLY%3D&md5=f895e4a6d9bf533f186a0e9a2b78bb7aCAS |

Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum 131, 399–411.
Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KqsrvM&md5=1735fc01ccfade2cbd6d75d5db1af6d4CAS |

Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669.
Potassium transport and plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Oit70%3D&md5=b00298e506b7189fc2da0a5277d6448aCAS |

Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222, 1041–1050.
Salinity induced ion flux patterns from the excised roots of Arabidopsis sos mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gqsr7O&md5=54b73b0e965e781e38b6cf9879747bdcCAS |

Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress: the root antioxidative system. Physiologia Plantarum 112, 487–494.
Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress: the root antioxidative system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslShtbw%3D&md5=2953b6a94d0940637fe7ca58bfc99926CAS |

Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and ABA. Plant Molecular Biology 50, 543–550.
Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and ABA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt12rsbk%3D&md5=579a08ac002d7789eaa55f7c565c6f38CAS |

Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America 97, 6896–6901.
The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFahtrs%3D&md5=55efc6e21ef49d2fa4b8ba59e5aa88d8CAS |

Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14, 465–477.
The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVKgur0%3D&md5=ccb6ca3023e084604ac9919dda258f2fCAS |

Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21, 81–85.
Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVyr&md5=d8c03cc399833ff360a83239f36e35e4CAS |

Singh AL, Hariprassana K, Solanki RM (2008) Screening and selection of groundnut genotypes for tolerance of soil salinity. Australian Journal of Crop Science 1, 69–77.

Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125, 27–58.
The role of active oxygen in the response of plants to water deficit and desiccation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFams70%3D&md5=911b125325b7e0cc1a37720505d9db14CAS |

Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae) a halophyte C4 plant. Journal of Proteome Research 9, 2882–2897.
Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae) a halophyte C4 plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1OntrY%3D&md5=72afeae0c6265534bb6080c7cc469439CAS |

Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology 149, 1154–1165.
Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ajs7c%3D&md5=6be1dbf32cadf7f01fe077a9c360d3e6CAS |

Sumithra K, Jutur PP, Carmel BD, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regulation 50, 11–22.
Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqsrzJ&md5=606678d7e4c7ceb6ed30d4d3753d5a12CAS |

Sun ZB, Qi XY, Li PH, Wu CX, Zhao YX, Zhang H, Wang ZL (2008) Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. Journal of Plant Biology 51, 25–34.
Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFWqur8%3D&md5=8297347e49b79eff0c103e1d160028adCAS |

Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology 135, 1697–1709.
Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsb4%3D&md5=81e14fe696b5095bfb65704fa073072dCAS |

Teakle NL, Tyerman SD (2010) Mechanisms of Cl– transport contributing to salt tolerance. Plant, Cell & Environment 33, 566–589.
Mechanisms of Cl transport contributing to salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2hurc%3D&md5=a7e1006ed4ad067d5241cb4f08c53992CAS |

Tena G, Asai T, Chiu WL, Sheen J (2001) Plant MAPK signaling cascades. Current Opinion in Plant Biology 4, 392–400.
Plant MAPK signaling cascades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFKgtrw%3D&md5=673eb8cfee137a2671dedfe716516afaCAS |

Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503–527.
Na+ tolerance and Na+ transport in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyisbk%3D&md5=88eb811f9dc3f2cd8aa877eaee28c69dCAS |

Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell 11, 1195–1206.

Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. The Plant Cell 11, 1743–1754.

Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Science 161, 405–414.
The role of active oxygen species in plant signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1aqtbY%3D&md5=675d6a4a826fb55bd5a0cbdcc22be6dbCAS |

Volkov V, Amtmann A (2006) Thellungiella halophila, a salt tolerant relative of Arabidopsis thaliana, has specific root ion channel features supporting K+/Na+ homeostasis under salinity stress. The Plant Journal 48, 342–353.
Thellungiella halophila, a salt tolerant relative of Arabidopsis thaliana, has specific root ion channel features supporting K+/Na+ homeostasis under salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ahsLnN&md5=d0d03993219be08ad90d38d77120441eCAS |

Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell & Environment 27, 1–14.
Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1emtLo%3D&md5=7b3000ad74d67efdeeb6a57eaf35617eCAS |

Waisel Y, Yeshel A, Agami M (1986) Salt balance of leaves of the mangrove, Avicennia marina. Physiologia Plantarum 67, 67–72.
Salt balance of leaves of the mangrove, Avicennia marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xktl2mu7c%3D&md5=000c92e5f3d9cec642e83a0e918411d1CAS |

Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vlugaris L.) elucidates constitutive adaptation during the first phase of salt stress. Journal of Plant Physiology 168, 519–526.
Proteome analysis of sugar beet (Beta vlugaris L.) elucidates constitutive adaptation during the first phase of salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1GnsrY%3D&md5=39da4f6befd86b31a7e23cc9ef9a4dd5CAS |

Wang WX, Vinocur B, Altman A (2003a) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.
Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovV2ltbo%3D&md5=8d51b8728fa1075fdec82573fb56fbbcCAS |

Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2003b) Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus. DNA Sequence 14, 351–358.
Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlaqtLg%3D&md5=34a0f51a5536e84cbddc0c07dc5671a7CAS |

Wang B, Luttge U, Ratajczak R (2004a) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. Journal of Plant Physiology 161, 285–293.
Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2itr4%3D&md5=0542355d437f38d4b03517e089b9a6e2CAS |

Wang ZI, Li P, Fredricksen M, Gong ZH, Kim CS, Zhang CQ, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX, Zhang H (2004b) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science 166, 609–616.
Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWgsLg%3D&md5=d6e38aa8a1e0c39e6cab5d2a8e512b56CAS |

Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. Journal of Experimental Botany 57, 1161–1170.
Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Gls70%3D&md5=d37b4aedf8b43097a1d34e40c941b807CAS |

Wang RL, Hua C, Zhou F, Zhou QC (2009) Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar. Photosynthetica 47, 125–127.
Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVaqtbc%3D&md5=995b51812ce1375f1e61c0efd116c365CAS |

Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Molecular Biology 58, 561–574.
Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Wns7s%3D&md5=9af1ee59059a655e8d897e83c6200068CAS |

Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology 140, 1437–1450.
Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jsrg%3D&md5=bc2602d9f372a60ee95a3425aae4196bCAS |

Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant & Cell Physiology 45, 600–607.
The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Klurg%3D&md5=b4b8b1f0ebe468b0dcd8fd456ba413daCAS |

Wu YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Science 169, 65–73.
Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFegtrs%3D&md5=9740ed7ccb866a1d0c9f8693439dc475CAS |

Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America 109, 12219–12224.
Insights into salt tolerance from the genome of Thellungiella salsuginea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GktbvN&md5=d9146f925e4f55a330df8fc14c4b0702CAS |

Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment 25, 131–139.
Molecular and genetic aspects of plant responses to osmotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslaktb0%3D&md5=a84faaa1ebd166539ab41ca4d7ff5786CAS |

Xu SM, Wang XC, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Reports 26, 497–506.
Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVamtL8%3D&md5=09c43c977d831bf013df5e6b26363ed9CAS |

Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expression a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167, 849–859.
Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expression a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Wksrs%3D&md5=9d15c0d3c8a300d0cd863b2af01c5ef7CAS |

Yadav DK, Tuteja N (2011) Rice G-protein coupled receptor (GPCR): in silico analysis and transcription regulation under abiotic stress. Plant Signaling & Behavior 6, 1079–1086.
Rice G-protein coupled receptor (GPCR): in silico analysis and transcription regulation under abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSms70%3D&md5=0b13dd2b8e5266f7c389fc6454f4eb36CAS |

Yang AF, Duan XG, Gu XF, Gao F, Zhang JR (2005) Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance. Plant Cell, Tissue and Organ Culture 83, 259–270.
Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSjtrbP&md5=6f570b7026ddcd38a1499945113f28b0CAS |

Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. Journal of Experimental Botany 61, 2519–2533.
GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSqtLs%3D&md5=9bf4006eabbed3e6bcd71878c792d96aCAS |

Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal 30, 529–539.
Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFyktL0%3D&md5=08a83482979c4b3f4ba66c201e80e8faCAS |

Yoshida K (2002) Plant biotechnology-genetic engineering to enhance plant salt tolerance. Plant Biotechnology 94, 585–590.

Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology 19, 765–768.
Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslektLw%3D&md5=160c1b2f69fafc27ca6e47963b22ba74CAS |

Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America 98, 12 832–12 836.
Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFahsLs%3D&md5=2ae5dcd60094ddbbcba5ed00f410b2c1CAS |

Zhang X, Guo SL, Yin HB, Xiong DJ, Zhang H, Zhao YX (2004) Molecular cloning and identification of a heat shock cognate protein 70 gene, Thhsc70, in Thellungiella halophila. Acta Botanica Sinica 46, 1212–1219.

Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012a) Mechanisms of plant salt response: insights from proteomics. Journal of Proteome Research 11, 49–67.
Mechanisms of plant salt response: insights from proteomics.Crossref | GoogleScholarGoogle Scholar |

Zhang Y, Li Y, Lai J, Zhang H, Liu Y, Liang L, Xie Q (2012b) Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Molecular Biology Reports 39, 4627–4633.
Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlSjs74%3D&md5=3aab035ae2f76a357dca7938d2ace75cCAS |

Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124, 941–948.
Genetic analysis of plant salt tolerance using Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlWrurw%3D&md5=1545e6bbd508600b07731cd0de3a16b3CAS |

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjtLs%3D&md5=36de2a21d4f2c605397e01ce5240d467CAS |

Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247–273.
Salt and drought stress signal transduction in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbc%3D&md5=f20f5493d7e57fe0984b2dba9a510739CAS |

Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences 16, 253–277.

Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role to potassium nutrition. The Plant Cell 10, 1181–1191.