Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Reactive oxygen species regulation and antioxidant defence in halophytes

Rengin Ozgur A , Baris Uzilday A , Askim Hediye Sekmen A and Ismail Turkan A B
+ Author Affiliations
- Author Affiliations

A Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey.

B Corresponding author. Email: ismail.turkan@ege.edu.tr

This paper originates from a presentation at the COST WG2 MeetingPutting halophytes to workgenetics, biochemistry and physiologyHannover, Germany, 2831 August 2012.

Functional Plant Biology 40(9) 832-847 https://doi.org/10.1071/FP12389
Submitted: 22 December 2012  Accepted: 3 April 2013   Published: 16 May 2013

Abstract

Production of reactive oxygen species (ROS), which are a by-product of normal cell metabolism in living organisms, is an inevitable consequence of aerobic life on Earth, and halophytes are no exception to this rule. The accumulation of ROS is elevated under different stress conditions, including salinity, due to a serious imbalance between their production and elimination. These ROS are highly toxic and, in the absence of protective mechanisms, can cause oxidative damage to lipids, proteins and DNA, leading to alterations in the redox state and further damage to the cell. Besides functioning as toxic by-products of stress metabolism, ROS are also important signal transduction molecules in controlling growth, development and responses to stress. Plants control the concentrations of ROS by an array of enzymatic and non-enzymatic antioxidants. Although a relation between enzymatic and non-enzymatic antioxidant defence mechanisms and tolerance to salt stress has been reported, little information is available on ROS-mediated signalling, perception and specificity in different halophytic species. Hence, in this review, we describe recent advances in ROS homeostasis and signalling in response to salt, and discuss current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses in halophytes. We also highlight the role of genetic, proteomic and metabolic approaches for the successful study of the complex relationship among antioxidants and their functions in halophytes, which would be critical in increasing salt tolerance in crop plants.

Additional keywords: antioxidant, halophyte, ROS, salinity.


References

Aghaleh M, Nikham V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum 53, 243–248.
Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2ktLg%3D&md5=0aa0eaacacdc08ca81267bcffb7468e1CAS |

Alhdad GM, Seal CE, Al-Azzawi MJ, Flowers TJ (2013) The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environmental and Experimental Botany 87, 120–125.
The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1KqtL0%3D&md5=5e935ae37e77cb22b60575c425f66ea2CAS |

Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53, 1331–1341.
Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFSlsL4%3D&md5=03ee994bf3de3fd6d70534d6ed7a688fCAS | 11997379PubMed |

Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1143, 113–134.
Photoinhibition of photosystem II. Inactivation, protein damage and turnover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Kgtb0%3D&md5=b77389a0f80569a5e61b4e9f5ddec752CAS |

Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141, 391–396.
Production and scavenging of reactive oxygen species in chloroplasts and their functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksbY%3D&md5=0a8de50ebf385debd1de530b72d61f2bCAS | 16760493PubMed |

Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27, 84–93.
Biotechnological approach of improving plant salt tolerance using antioxidants as markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2nsrvP&md5=0cb0bb9025b9f365ba4762a553012790CAS | 18950697PubMed |

Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh HS (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6, 2542–2554.
Effects of salinity levels on proteome of Suaeda aegyptiaca leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslCgsbs%3D&md5=4f0f2d4a389775412cb0eb4b19c67ceeCAS | 16612795PubMed |

Aslund F, Beckwith J (1999) Bridge of troubled waters: sensing stress by disulfide bond formation. Cell 96, 751–753.

Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.) Functional & Integrative Genomics 8, 287–300.
Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVWiur4%3D&md5=c1a0b3611dcbd2b8d1a4420699460bdaCAS |

Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24, 23–58.
Drought and salt tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12ns7c%3D&md5=aa8bab8304793b0e6dee077dad09bb65CAS |

Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.) Journal of Experimental Botany 55, 1663–1669.
Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntValtrk%3D&md5=7384fea8f80cd595290657a91db6c427CAS | 15258167PubMed |

Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners, origin. Trends in Plant Science 15, 330–336.
Photorespiration: players, partners, origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntV2itr4%3D&md5=d31154bff8baeee5dabcd65b4fbaee4eCAS | 20403720PubMed |

Bauwe H, Hagemann M, Kern R, Timm S (2012) Photorespiration has a dual origin and manifold links to central metabolism. Current Opinion in Plant Biology 15, 269–275.
Photorespiration has a dual origin and manifold links to central metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnsl2qsbg%3D&md5=144a06a4ed99c704cd4d27d8dc5d1da5CAS | 22284850PubMed |

Belles-Boix E, Babiychuk E, Van Montagu M, Inze D, Kushnir S (2000) CEO1 a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Letters 482, 19–24.
CEO1 a new protein from Arabidopsis thaliana, protects yeast against oxidative damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVWhtLY%3D&md5=7ad6ca56a2b011a3a3ad0391376e81bdCAS | 11018516PubMed |

Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science 168, 889–899.
Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslWnsbo%3D&md5=5eec7057b12cc6d8e6dc0334d8cc6ebaCAS |

Ben Amor N, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiologia Plantarum 126, 446–457.
Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVehur8%3D&md5=4558fc1e8e0715a9c8d369259a0b04b3CAS |

Ben Hamed K, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation 53, 185–194.
Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahs7jN&md5=5e7da10fa9084ac53a6e9e70ecbe8240CAS |

Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Journal of Experimental Botany 59, 1315–1326.
An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1aitLs%3D&md5=cb18afaf4aebe0707ae664ab6134c6e3CAS | 18385490PubMed |

Benzarti M, Ben Rejeb K, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiologiae Plantarum 34, 1679–1688.
Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity.Crossref | GoogleScholarGoogle Scholar |

Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochimica et Biophysica Acta 1465, 140–151.
Sodium transport in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wgtrs%3D&md5=0bc2ce62783cc3db8047740db60cda3dCAS | 10748251PubMed |

Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science 164, 77–84.
The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFertrw%3D&md5=3844727bd4a6527c1bf57af7bffaea0bCAS |

Bose J, Pottosin II, Shabala SS, Palmgreen MG, Shabala S (2011) Calcium efflux systems in stress signalling and adaptation in plants. Frontiers in Plant Science 2, 85
Calcium efflux systems in stress signalling and adaptation in plants.Crossref | GoogleScholarGoogle Scholar | 22639615PubMed |

Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiology 127, 1354–1360.
Learning from the Arabidopsis experience. The next gene search paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVWitA%3D%3D&md5=f92de75bc6ec76511ba45717d34683e0CAS | 11743073PubMed |

Byrt CS, Munns R (2008) Living with salinity. New Phytologist 179, 903–905.
Living with salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FN&md5=d749375a7235b4b5acfb43196a7b0e64CAS | 18798890PubMed |

Cai-Hong P, Su-Jun Z, Zhi-Zhong G, Bao-Shan W (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiologia Plantarum 125, 490–499.
NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa.Crossref | GoogleScholarGoogle Scholar |

Chen J, Cheng T, Wang P, Liu W, Xiao J, Yang Y, Hu X, Jiang Z, Zhang S, Shi J (2012) Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa. Journal of Proteomics 75, 5226–5243.
Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVymsbnM&md5=f5a12db41462932d2e3613c718302ae0CAS | 22728773PubMed |

Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. The Plant Journal 53, 554–565.
Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSmsr0%3D&md5=341c95a6c7707b625bda3b89791e040bCAS | 17996020PubMed |

Colville L, Smirnoff N (2008) Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. Journal of Experimental Botany 59, 3857–3868.
Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaltrzF&md5=ad4ddfec011aaefbc3ebe29bc5754e9eCAS | 18849295PubMed |

Corpas FJ, Gómez M, Hernández JA, del Río LA (1993) Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. Journal of Plant Physiology 141, 160–165.
Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvVOrurc%3D&md5=f32462d9c104a3206fd3cdd8f3c3ee4bCAS |

Costa JH, Jolivet Y, Hasenfratz-Sauder MP, Orellano EG, Lima MGS, Dizengremel P, de Melo DF (2007) Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance. Journal of Plant Physiology 164, 718–727.
Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFWqtbg%3D&md5=61fa8fef0b5f814a6414f73b06afa8f9CAS | 16716451PubMed |

Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathiomylation in protein redox regulation. Free Radical Biology & Medicine 43, 883–898.
S-glutathiomylation in protein redox regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFOqtbc%3D&md5=86a6861d556fa77872fb84c41552d9d4CAS |

Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman J (2011) The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics 43, 913–918.
The genome of the extremophile crucifer Thellungiella parvula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOltLo%3D&md5=4a9abf9a293e9aca54fe119071b17588CAS | 21822265PubMed |

Debez A, Ben Hamed K, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant and Soil 262, 179–189.
Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlGnsrg%3D&md5=d68e27d78607a3657c084511b3dcd433CAS |

English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Functional Plant Biology 40, 897–912.
Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species).Crossref | GoogleScholarGoogle Scholar |

Ellouzi H, Ben Hamed K, Cela J, Munne-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum 142, 128–143.
Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFeru7c%3D&md5=69bd9f4bf373c393d61d80b4a4d9a6caCAS | 21288246PubMed |

Falleh H, Ksouri R, Oueslati S, Guyot S, Magne C, Abdelly C (2009) Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food and Chemical Toxicology 47, 2308–2313.
Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus.Crossref | GoogleScholarGoogle Scholar |

Falleh H, Ksouri R, Oueslati S, Guyot S, Abdelly C, Magne C (2012) Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule. South African Journal of Botany 79, 117–124.
Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFantLg%3D&md5=10ebdebe203ac46605423efd2398d8fdCAS |

FAO (2000) ‘FAO land and plant nutrition management service, 6.’ Available at http://www.fao.org/ag/agl/agll/spush [Verified 23 April 2013]

Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annual Review of Plant Biology 53, 275–297.
The lipoxygenase pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhur4%3D&md5=549d9c641459791424a6f28d56cae040CAS | 12221977PubMed |

Fitzgerald TL, Waters DLE, Henry RJ (2009) Betaine aldehyde dehydrogenase in plants. Plant Biology 11, 119–130.
Betaine aldehyde dehydrogenase in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFWru7c%3D&md5=d81ab4338b843a7e246cafab42010505CAS | 19228319PubMed |

Flowers J, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179, 945–963.
Salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWqur%2FE&md5=06dcabcbf1411c34a35d7aed78f04afbCAS |

Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology 28, 89–121.
The mechanism of salt tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksFSisb8%3D&md5=ab0a16957d0ffbee896436c71cd4eb84CAS |

Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17, 1866–1875.
Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1yjt7o%3D&md5=ebd9b5080e2dbd4282f86e3e72a9e3f0CAS | 15987996PubMed |

Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamammoto KT (2004) A methyl viologen resistant mutant of Arabidopsis, which is allelic to ozone sensitive rcd1, is tolerant to supplemetal ultraviolet-B radiation. Plant Physiology 134, 275–285.
A methyl viologen resistant mutant of Arabidopsis, which is allelic to ozone sensitive rcd1, is tolerant to supplemetal ultraviolet-B radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagu7s%3D&md5=5418f2bdd53385c549869e34433694e2CAS | 14657410PubMed |

Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. The Plant Journal 30, 541–553.
Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFyktLo%3D&md5=0776b590d6b36a21046a17fca3853011CAS | 12047629PubMed |

Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bio Essays 28, 1091–1101.
Reactive oxygen species as signals that modulate plant stress responses and programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ertLnI&md5=a6cc32cf2d6fa468f584a8c96dcf9da8CAS |

Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cellular and Molecular Life Sciences 62, 24–35.
The plant thioredoxin system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaks7Y%3D&md5=687c61324c2a002c547cfab25aede72dCAS | 15619004PubMed |

Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology 165, 588–599.
Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wgsr8%3D&md5=84ffa3a368021bbba2f88c11c41f0bdeCAS | 17723252PubMed |

Gómez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. Journal of Agricultural and Food Chemistry 60, 4620–4627.
Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens.Crossref | GoogleScholarGoogle Scholar | 22512450PubMed |

Gong Q, Li P, Ma S, Indu Rapassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal 44, 826–839.
Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWltrbN&md5=620030b0bcdb8cf64087da8a830c4207CAS | 16297073PubMed |

Guo XL, Cao YR, Cao ZY, Zhao YX, Zhang H (2004) Molecular cloning and characterization of a stress-induced peroxiredoxin Q gene in halophyte Suaeda salsa. Plant Science 167, 969–975.
Molecular cloning and characterization of a stress-induced peroxiredoxin Q gene in halophyte Suaeda salsa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGisrY%3D&md5=d64336821b3de646f597b44c4fe2065bCAS |

Hafsi C, Romero-Puertas MC, Gupta D, del Rio LA, Sandalio LM, Abdelly C (2010) Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environmental and Experimental Botany 69, 129–136.
Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFant7Y%3D&md5=484148a3798ce899ab54afc91f144963CAS |

Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America 97, 3735–3740.
The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlajsrg%3D&md5=d0444e59225e38ccde9b65b8e3bb0f0cCAS | 10725350PubMed |

Halliwell B, Gutteridge JMC (1989) ‘Free radicals in biology and medicine.’ (Claredon Press: Oxford)

Hashida S, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Annals of Botany 103, 819–824.
The role of NAD biosynthesis in plant development and stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Ghsr4%3D&md5=6cac4867d982d823f0e6088589e9ffb4CAS | 19201765PubMed |

Hayakawa K, Agarie S (2010) Physiological roles of betacyanin in a halophyte, Suaeda japonica Makino. Plant Production Science 13, 351–359.
Physiological roles of betacyanin in a halophyte, Suaeda japonica Makino.Crossref | GoogleScholarGoogle Scholar |

Hessini K, Martinez JP, Gandour M, Albouchi A, Soltani A, Abdelly C (2009) Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environmental and Experimental Botany 67, 312–319.
Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora.Crossref | GoogleScholarGoogle Scholar |

Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compunds. Planta 207, 604–611.
Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compunds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslKisLw%3D&md5=1bd8a3fde7e2c1c1b29109f41b5ea441CAS |

Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168, 541–549.
Drought and salinity: a comparison of their effects on mineral nutrition of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCntL0%3D&md5=14d5a82e01658834ecea1fa79715c857CAS |

Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum 138, 405–413.
Reactive oxygen species in abiotic stress signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlOkt7s%3D&md5=a257e126ac7b07b6d75b1124a01768f1CAS | 20028478PubMed |

Jha B, Agarwal PK, Reddy PS, Lal S, Sapory SK, Reddy MK (2009) Dentification of salt induced genes from Salicornia brachiate, an extreme halophyte through expressed sequence tags analysis. Genes & Genetic Systems 84, 111–120.
Dentification of salt induced genes from Salicornia brachiate, an extreme halophyte through expressed sequence tags analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFansLzK&md5=d594ea55f21baf35de7d61e396c593c7CAS |

Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology 138, 790–802.
Patterns of protein oxidation in Arabidopsis seeds and during germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVejsrw%3D&md5=5966e8b370712afc0ebba5d891672bbfCAS | 15908592PubMed |

Johansson E, Olsson O, Nystrom T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. Journal of Biological Chemistry 279, 22 204–22 208.
Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvF2rsLc%3D&md5=db08f18a1da133e8c1c2ca2d76b667a7CAS |

Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. The Plant Cell 17, 957–970.
Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ygt7Y%3D&md5=060df6ddd4401625dd0c68e1f30380fcCAS | 15705948PubMed |

Kalita D, Saikia CN (2004) Chemical constituents and energy content of some latex bearing plants. Bioresource Technology 92, 219–227.
Chemical constituents and energy content of some latex bearing plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVehsA%3D%3D&md5=3a34de3a512ddd447114b54541a2c351CAS | 14766154PubMed |

Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 18 816–18 821.
The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlahtbzF&md5=cafd8c0b9db49ed7e5e9de7ba6c180f2CAS |

Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149, 43–50.
The Haber-Weiss reaction and mechanisms of toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvV2htrs%3D&md5=83d6dc153e10ae5eceda5a12be296a49CAS | 10963860PubMed |

Kong Y, Zhou G, Wang Y (2001) Physiological characteristics and alternative respiratory pathway under salt stress in two wheat cultivars differing in salt tolerance. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 48, 595–600.
Physiological characteristics and alternative respiratory pathway under salt stress in two wheat cultivars differing in salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1emurk%3D&md5=79d0f243cd1c0998defaff79c09c47b0CAS |

Kore-eda S, Cushman MA, Akserod I, Bufford D, Fredrickson M, Clark E, Cushman JC (2004) Transcript profiling of salinity stress responses by large scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341, 83–92.
Transcript profiling of salinity stress responses by large scale expressed sequence tag analysis in Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar | 15474291PubMed |

Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress – contribution of proteomics studies to understanding plant stress response. Journal of Proteomics 74, 1301–1322.
Plant proteome changes under abiotic stress – contribution of proteomics studies to understanding plant stress response.Crossref | GoogleScholarGoogle Scholar | 21329772PubMed |

Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant, Cell & Environment 29, 1033–1048.
Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFaktb0%3D&md5=4b7268b6b5d95f452d0f404ef21f2742CAS |

Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany 56, 136–146.
Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVaks70%3D&md5=1439449da5d51cb880441b94f6ddb7d2CAS |

Kranner I, Birtic S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Biology & Medicine 40, 2155–2165.
Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2hurg%3D&md5=318aa57fc22cb0f2420dea7e6c7da557CAS |

Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry 45, 244–249.
Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslCiu70%3D&md5=f869c0e7a0889e3ab2697f6b416a33f6CAS | 17408958PubMed |

Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magne C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food and Chemical Toxicology 47, 2083–2091.
Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2gtLo%3D&md5=92722c47facafb8ca3b6f59a61794106CAS | 19500639PubMed |

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal 22, 2623–2633.
NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1WrtLY%3D&md5=146fe7d16a817cd871804cdc45bee880CAS | 12773379PubMed |

Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant, Cell & Environment 35, 1582–1600.
HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKlsr3M&md5=ad29502fbbf884368eaee81c09095bf0CAS |

Liu J, Ishitani M, Halfer U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97, 3730–3734.
The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlajsrs%3D&md5=7f45bc9d5ba0e2a6be8d93874ca2fe57CAS | 10725382PubMed |

Liu L, Wang Y, Zeng Y, Haxim Y, Zheng F (2012) Identification and characterization of differentially expressed genes in the halophyte Halostachys caspica under salt stress. Plant Cell, Tissue and Organ Culture 110, 1–12.
Identification and characterization of differentially expressed genes in the halophyte Halostachys caspica under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSiurs%3D&md5=dcf14707824086a1c4f0a1ff6b3b964dCAS |

Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology 119, 1091–1100.
Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFymu78%3D&md5=4240787aacf0ca436e28b9ab0e2df0f0CAS | 10069848PubMed |

Loiacono FV, De Tullio MC (2012) Why we should stop inferring simple corrections between antioxidants and plant stress resistance: towards the antioxidomic era. OMICS: A Journal of Integrative Biology 16, 160–167.
Why we should stop inferring simple corrections between antioxidants and plant stress resistance: towards the antioxidomic era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVKhsbY%3D&md5=4e119c9766b4d6d83dd615d82b7667ceCAS |

Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Culture 104, 41–49.
Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajsrvF&md5=e182e1f1ded8079201c85b470657f567CAS |

Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal 64, 215–229.
Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgtrfK&md5=51c344a2a0f1e2f91e770bd416f35462CAS | 21070405PubMed |

Maas EV, Grieve CM (1987) Salinity induced calcium deficiency in salt stressed corn. Plant, Cell & Environment 10, 559–564.

Mehler AH (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Archives of Biochemistry and Biophysics 33, 65–77.
Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XovFGg&md5=a8f6eb2914830841b56eb64b94b09ca3CAS | 14857775PubMed |

Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt tolerant mangrove species Avicennia marina (Forsk) Vierh. Theoretical and Applied Genetics 110, 416–424.
Generation and analysis of expressed sequence tags from the salt tolerant mangrove species Avicennia marina (Forsk) Vierh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVymsrY%3D&md5=886e5027a9d07ed24c62ca9b6c7a45b4CAS | 15609053PubMed |

Meot-Duros L, Magne C (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiology and Biochemistry 47, 37–41.
Antioxidant activity and phenol content of Crithmum maritimum L. leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtbnL&md5=4cfefe47d7f571649b7c3c9b96e0f2d8CAS | 18980846PubMed |

Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydrylgroups. Photosynthesis Research 86, 435–457.
Glutathione homeostasis and redox-regulation by sulfhydrylgroups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFym&md5=a7371ad3b7e009a525b686a536cfd722CAS | 16315075PubMed |

Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP (2008) Glutaredoxins and thioredoxins in plants. Biochimica et Biophysica Acta 1783, 589–600.
Glutaredoxins and thioredoxins in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVaisb0%3D&md5=0e4efa745612bd609e8ba4d71c70ceeaCAS | 18047840PubMed |

Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiaz-Maslow M, Noctor G, Lemalre SD (2005) Glutationylation of chloroplast thioredoxin f is a redox signalling mechanism in plants. Proceedings of the National Academy of Sciences of the United States of America 102, 16 478–16 483.
Glutationylation of chloroplast thioredoxin f is a redox signalling mechanism in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CgurnP&md5=eda4f8b08118f9eaa8118134db2db998CAS |

Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annual Review of Plant Biology 62, 79–104.
Organization and regulation of mitochondrial respiration in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslansrk%3D&md5=09c938c0507d4acb3e21e579bc35bca9CAS | 21332361PubMed |

Misra AN, Latowski D, Strzalka K (2006) The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 53, 102–109.
The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjtrY%3D&md5=45280b8e2d7afb6e57cd6eaa79c54f85CAS |

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405–410.
Oxidative stress, antioxidants and stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVWnu7Y%3D&md5=6fc277d70817036dd692121577a2da70CAS | 12234732PubMed |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
Reactive oxygen gene network of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2msrg%3D&md5=f784349d5767e5607415f067ce056dcbCAS | 15465684PubMed |

Moon H, Lee B, Choi G, Shin S, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America 100, 358–363.
NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlOltw%3D%3D&md5=3d2cd9ad520314a46ad754d2c539abc7CAS | 12506203PubMed |

Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Sciences 21, 31–57.

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=0ce1f7aad22c73fffb329d4603f0e836CAS | 18444910PubMed |

Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant, Cell & Environment 29, 409–425.
Metabolic signalling in defence and stress: the central roles of soluble redox couples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlyltrY%3D&md5=61b6754f8d74a53758695115f20597efCAS |

Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49, 249–279.
Ascorbate and glutathione: keeping active oxygen under control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVShtrc%3D&md5=e7e5d74e08971d20646178b2cbd0d7e0CAS | 15012235PubMed |

Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany 49, 623–647.

Noctor G, Veljovic‐Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Annals of Botany 89, 841–850.
Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVeitLs%3D&md5=501ad82787ede534efdaf872c9df1089CAS | 12102510PubMed |

Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. Journal of Experimental Botany 57, 1603–1620.
NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaqsbo%3D&md5=0e8d164b4a65b0028a4d4c0c0718e060CAS | 16714307PubMed |

Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends in Plant Science 12, 125–134.
Mitochondrial redox biology and homeostasis in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVShtr8%3D&md5=fd702f19b3f9992c6537c904f0dcede7CAS | 17293156PubMed |

Ogawa K (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxidants & Redox Signalling 7, 973–981.
Glutathione-associated regulation of plant growth and stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsl2isLk%3D&md5=61cb8fe371094928bde4158bd719b7ddCAS |

Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiology 151, 210–222.
Loss of halophytism by interference with SOS1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOjsbzL&md5=f96d00c79f5df2bb70c90152d4a4aa6eCAS | 19571313PubMed |

Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, D’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiology 154, 1040–1052.
Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2nsbfP&md5=87279db9296b926d0fb9d036cc19ccbeCAS | 20833729PubMed |

Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences of the United States of America 100, 11 771–11 776.
A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFKmuro%3D&md5=ff6a1c81369154c6898d04e3db000abaCAS |

Olías R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment 32, 904–916.
The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs.Crossref | GoogleScholarGoogle Scholar |

Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research 9, 2584–2599.
Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVKrur8%3D&md5=acb43941c8b68676f0da9f5da4a2b77dCAS | 20377188PubMed |

Parida AK, Jha B (2010) Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata. Journal of Plant Growth Regulation 29, 137–148.
Antioxidative defense potential to salinity in the euhalophyte Salicornia brachiata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlKht78%3D&md5=40cf948e89bd4993f8d678678c7a9830CAS |

Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology 161, 531–542.
Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFCgtr0%3D&md5=0ebbc3e683096a3873fcb55a955606eaCAS | 15202709PubMed |

Potters G, Horemans N, Jansen MSK (2010) The cellular redox state in plant stress biology – a charging concept. Plant Physiology and Biochemistry 48, 292–300.
The cellular redox state in plant stress biology – a charging concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFeqtbw%3D&md5=6277f98302fadb9f4e2c8db4fdc9fa7fCAS | 20137959PubMed |

Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America 99, 8436–8441.
Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVGntrg%3D&md5=98937bc34b0b011d2446b8c2d342efdeCAS | 12034882PubMed |

Qiu QS, Huber JL, Booker FL, Jain V, Leakey ADB, Fiscus EL, Yau PM, Ort DR, Huber SC (2008) Increased protein carbonylation in leaves of i and soybean in response to elevated CO2. Photosynthesis Research 97, 155–166.
Increased protein carbonylation in leaves of i and soybean in response to elevated CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovF2iu70%3D&md5=b12ce01b37d6c98e3d9423b4acc49a42CAS | 18506594PubMed |

Qiu-Fang Z, Yuan LY, Hong PC, Ming LC, Shan WB (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Science 168, 423–430.
NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L.Crossref | GoogleScholarGoogle Scholar |

Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry 363, 58–69.
A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWksbc%3D&md5=bae1c0efef8ab0c0cb82281cdf2e68d4CAS | 17288982PubMed |

Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biology 9, 565–572.
Novel insight into the regulation of GSH biosynthesis in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelsr3F&md5=6ce590e85348a7d0048468d7ed41a37dCAS | 17853356PubMed |

Rinalducci S, Murgiano L, Zollda L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of Experimental Botany 59, 3781–3801.
Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaltrzJ&md5=040a8d6f5801dcf61a177273ca97698eCAS | 18977746PubMed |

Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase and catalase. The Plant Journal 32, 329–342.
Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase and catalase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt12msrY%3D&md5=1e14a45b07e5dd0581ab3a04022dbcf1CAS | 12410811PubMed |

Rouhier N, Gelhaye E, Jacquot JP (2004) Plant glutaredoxins: still mysterious reducing systems. Cellular and Molecular Life Sciences 61, 1266–1277.
Plant glutaredoxins: still mysterious reducing systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFSgt78%3D&md5=0920bb83e6d196003f6d619201496a5eCAS | 15170506PubMed |

Rozema J, Flowers T (2008) Crops for a salinized world. Science 322, 1478–1480.
Crops for a salinized world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSisr%2FM&md5=69a14a68a0adf99a318e046a7d153db2CAS | 19056965PubMed |

Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biology 9, 69
Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization.Crossref | GoogleScholarGoogle Scholar | 19497134PubMed |

Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology & Medicine 30, 1191–1212.
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFegt78%3D&md5=0c800ea16e9fe1d0b0bea60cbb630f44CAS |

Seal CE, Zammit R, Scott P, Flowers TJ, Kranner I (2010) Glutathione halfcell reduction potential and αtocopherol as viability markers during the prolonged storage of Suaeda maritima seeds. Seed Science Research 20, 47–53.
Glutathione halfcell reduction potential and αtocopherol as viability markers during the prolonged storage of Suaeda maritima seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlemsro%3D&md5=5b6bca624f5fb1c34afa185508b203f5CAS |

Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany 69, 76–85.
The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFGhtbo%3D&md5=0a7c455201e6c6b5c5a6bea969dbceb4CAS |

Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata BARK. Environmental and Experimental Botany 77, 63–76.
Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata BARK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Onurc%3D&md5=13f15ff71e1c93d1f90880720d01dbc8CAS |

Sekmen Esen AH, Ozgur R, Uzilday B, Tanyolac ZO, Dinc A (2012) The response of the xerophytic plant Gypsophila aucheri Boiss. to salt and drought stresses: the role of the antioxidant defence system. Turkish Journal of Botany.

Shabala S, Mackay A (2011) Ion transport in halophytes. Advances in Botanical Research 57, 151–199.
Ion transport in halophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1Sit74%3D&md5=d86d24c3774e60f11dc40546278fcb8fCAS |

Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews 32, 307–326.
Quantification and significance of protein oxidation in biological samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFCnuw%3D%3D&md5=7c74ed4ba162d3e44dcde64fecb00970CAS | 11139131PubMed |

Shevyakova NI, Rakitin VY, Stetsenko LA, Aronova EE, Kuznetsov VV (2006) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity. Plant Growth Regulation 50, 69–78.
Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqsr3K&md5=628ed48b7879054c079af40927be131eCAS |

Shevyakova NI, Bakulina EA, Kuznetsov VIV (2009) Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 56, 663–669.
Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCisbnO&md5=c5825a2f67ec6b156af34b9fb22e6f68CAS |

Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America 97, 6896–6901.
The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFahtrs%3D&md5=55efc6e21ef49d2fa4b8ba59e5aa88d8CAS | 10823923PubMed |

Shi H, Lee BH, Wu SJ, Zhu JK (2002) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21, 81–85.
Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 12469134PubMed |

Signorelli S, Arellano JB, Melo TB, Borsani O, Monza J (2013) Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiology and Biochemistry 64, 80–83.
Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislWgu70%3D&md5=8cb8be6cd90a2febc4c37b3b0c775396CAS | 23384940PubMed |

Smirnoff N (2005) ‘Antioxidants and reactive oxygen species in plants.’ (Blackwell Publishing Books: Oxford, UK)

Stadtman ER, Levine RL (2000) Protein oxidation. Annals of the New York Academy of Sciences 899, 191–208.
Protein oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1ShsL4%3D&md5=b3ef6cd1f909927124272ef24cb40132CAS | 10863540PubMed |

Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. The Plant Journal 35, 452–464.
Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFyitLo%3D&md5=55298522a140a0e5ab55d7920fd976c2CAS | 12904208PubMed |

Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97.
Proline: a multifunctional amino acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1yit7s%3D&md5=6ef05c7dd8725df8b7e99ff345554897CAS | 20036181PubMed |

Taji T, Seki M, Satou M, Sakurai T, Kaboyasi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology 135, 1697–1709.
Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqsb4%3D&md5=81e14fe696b5095bfb65704fa073072dCAS | 15247402PubMed |

Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. Food and Science Technology 43, 632–639.

Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology 148, 960–968.
Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLvE&md5=86ef30225343d16a445d31b1d291749cCAS | 18676660PubMed |

Trotta A, Antonacci A, Marsano F, Redondo-Gomez S, Clemente EMF, Andreucci F, Barbato R (2012) Identification of a 2-cys peroxiredoxin as a tetramethyl benzidine-hydrogen peroxide stained protein from the thylakoids of the extreme halophyte Arthrocnemum macrostachyum L. Plant Physiology and Biochemistry 57, 59–66.
Identification of a 2-cys peroxiredoxin as a tetramethyl benzidine-hydrogen peroxide stained protein from the thylakoids of the extreme halophyte Arthrocnemum macrostachyum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaitb3P&md5=2e27623d1b0d5755e3425d4cbe0f43f3CAS | 22683464PubMed |

Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gomez-Rodriguez MV, Colmernero-Varea P, del Rio LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Letters 581, 453–461.
Nitrosative stress in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKnu70%3D&md5=f2ca937e70bb349304f0c4093aa52573CAS | 17240373PubMed |

Venema JH, Posthumus F, De Vries M, Van Hasselt PR (1999) Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiologia Plantarum 105, 81–88.
Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFCktb0%3D&md5=c7b04ab6a172e8ab9312170b2d0981e9CAS |

Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Molecular and Cellular Biology 27, 7771–7780.
Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmsrzF&md5=397e540049174c5f026fdaafe7f39c4fCAS | 17785451PubMed |

Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science 11, 329–334.
Plant thioredoxins are key actors in the oxidative stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlGit7Y%3D&md5=c6a99b5ccef952cf21b2da5da77e82bdCAS | 16782394PubMed |

Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology 16, 123–132.
Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlamu74%3D&md5=1a272edd8ca01120c285749156619596CAS | 15831376PubMed |

Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57, 701–710.
Antioxidant enzymes responses to cadmium in radish tissues.Crossref | GoogleScholarGoogle Scholar | 11397437PubMed |

Wang ZI, Li PH, Fredericksen M, Gong ZH, Kim CS, Zhang CQ, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt tolerance. Plant Science 166, 609–616.
Expressed sequence tags from Thellungiella halophila, a new model to study plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWgsLg%3D&md5=d6e38aa8a1e0c39e6cab5d2a8e512b56CAS |

Wang X, Fan P, Song H, Chen X, Li X, Li Y (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research 8, 3331–3345.
Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFOitLY%3D&md5=51fae0c6c8b2c2ca68b113b8ac590f0aCAS | 19445527PubMed |

Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. Journal of Biological Chemistry 278, 47 483–47 490.
GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Cqt7w%3D&md5=629de96309d5842b692e4c0bfb88fea7CAS |

Wu H, Liu X, You L, Zhang L, Zhou D, Feng J, Zhao J, Yu J (2012a) Effects of salinity on metabolic profiles, gene expressions, and antioxidant enzymes in halophyte Suaeda salsa. Journal of Plant Growth Regulation 31, 332–341.
Effects of salinity on metabolic profiles, gene expressions, and antioxidant enzymes in halophyte Suaeda salsa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWnsLvE&md5=27b8ae7367485010a82dfdfceef3ec2dCAS |

Wu HJ, Zhang Z, Wang YJ, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, et al (2012b) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America 109, 12 219–12 224.
Insights into salt tolerance from the genome of Thellungiella salsuginea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GktbvN&md5=d9146f925e4f55a330df8fc14c4b0702CAS |

Yensen NP (2008) Halophyte uses for the twenty first century. In ‘Ecophysiology of high salinity tolerant plants’. (Eds MA Khan, DJ Weber) pp. 367–396. (Springer: Dordrecht, The Netherlands)

Yıldıztugay E, Sekmen AH, Turkan I, Kucukoduk M (2011) Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiology and Biochemistry 49, 816–824.
Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress.Crossref | GoogleScholarGoogle Scholar | 21605980PubMed |

Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Journal of Proteome Research 10, 3852–3870.
Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyhsbc%3D&md5=db8490723a5fe7630950ef12705b77a8CAS | 21732589PubMed |

Zhang L, Ma XL, Zhang Q, Ma CL, Wang PP, Sun YF, Zhao YX, Zhang H (2001) Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267, 193–200.
Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislaht70%3D&md5=ac9456a40d5ab05e6eb48a24507e30fbCAS | 11313146PubMed |

Zhang Y, Lai J, Sun S, Li Y, Liang L, Chen M, Xie Q (2008) Comparison analysis of transcripts from the halophyte Thellungiella halophila. Journal of Integrative Plant Biology 50, 1327–1335.
Comparison analysis of transcripts from the halophyte Thellungiella halophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaitbvE&md5=0ebb771e1b6fca75b6ae76a5656f075aCAS | 19017120PubMed |

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjtLs%3D&md5=36de2a21d4f2c605397e01ce5240d467CAS | 11173290PubMed |

Zouari N, Ben Saad R, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene 404, 61–69.
Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyku7nE&md5=b572fa7d2eb13fcd379ae0166d9ef6dcCAS | 17916418PubMed |