Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis

Kelvin H. P. Khoo A , Hayley R. Jolly A and Jason A. Able A B
+ Author Affiliations
- Author Affiliations

A School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia.

B Corresponding author. Email: jason.able@adelaide.edu.au

Functional Plant Biology 35(12) 1267-1277 https://doi.org/10.1071/FP08203
Submitted: 21 July 2008  Accepted: 25 September 2008   Published: 16 December 2008

Abstract

The RADiation sensitive protein 51 (RAD51) recombinase is a eukaryotic homologue of the bacterial Recombinase A (RecA). It is required for homologous recombination of DNA during meiosis where it plays a role in processes such as homology searching and strand invasion. RAD51 is well conserved in eukaryotes with as many as four paralogues identified in vertebrates and some higher plants. Here we report the isolation and preliminary characterisation of four RAD51 gene family members in hexaploid (bread) wheat (Triticum aestivum L.). RAD51A1, RAD51A2 and RAD51D were located on chromosome group 7, and RAD51C was on chromosome group 2. Q-PCR gene expression profiling revealed that RAD51A1 was upregulated during meiosis with lower expression levels seen in mitotic tissue, and bioinformatics analysis demonstrated the evolutionary linkages of this gene family to other eukaryotic RAD51 sequences. Western blot analysis of heterologously expressed RAD51 from bread wheat has shown that it is detectable using anti-human RAD51 antibodies and that molecular modelling of the same protein revealed structural conservation when compared with yeast, human, Arabidopsis and maize RAD51A orthologues. This report has widened the knowledge base of this important protein family in plants, and highlighted the high level of structural conservation among RAD51 proteins from various species.

Additional keywords: evolution, recombination.


Acknowledgements

The authors thank Professor Akira Shinohara (Faculty of Science, Osaka University, Japan) for supplying the anti-HsRAD51 antibody used in this study, and Dr Amanda J Able (School of Agriculture, Food and Wine, The University of Adelaide) for reviewing the manuscript. This research was supported in part by the Molecular Plant Breeding Cooperative Research Centre (MPB CRC), the Australian Government under the Australia-India Strategic Research Fund (AISRF) and the School of Agriculture, Food and Wine, The University of Adelaide.


References


Aihara H, Ito Y, Kurumizaka H, Yokoyama S, Shibata T (1999) The N-terminal domain of the human RAD51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. Journal of Molecular Biology 290, 495–504.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Albala JS, Thelen MP, Prange C, Fan WF, Christensen M, Thompson LH, Lennon GG (1997) Identification of a novel human RAD51 homolog, RAD51B. Genomics 46, 476–479.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Benson FE, Stasiak A, West SC (1994) Purification and characterization of the human RAD51 protein, an analog of Escherichia-coli RecA. EMBO Journal 13, 5764–5771.
CAS | PubMed |
open url image1

Bishop DK (1994) RecA homologs DMC1 and RAD51 interact to form multiple nuclear-complexes prior to meiotic chromosome synapsis. Cell 79, 1081–1092.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bishop DK, Park D, Xu LZ, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of Escherichia-coli RecA required for recombination, synaptonemal complex-formation, and cell-cycle progression. Cell 69, 439–456.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, Shinohara A (1998) XRCC3 is required for assembly of RAD51 complexes in vivo. Journal of Biological Chemistry 273, 21482–21488.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bleuyard JY, Gallego ME, Savigny F, White CI (2005) Differing requirements for the Arabidopsis RAD51 paralogs in meiosis and DNA repair. The Plant Journal 41, 533–545.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Boden SA, Shadiac N, Tucker EJ, Langridge P, Able JA (2007) Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Molecular Biology 8, 65.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cartwright R, Dunn AM, Simpson PJ, Tambini CE, Thacker J (1998) Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family. Nucleic Acids Research 26, 1653–1659.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Clark AJ, Margulies AD (1965) Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America 53, 451–459.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7, 267.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ding ZJ, Wang T, Chong K, Bai SN (2001) Isolation and characterization of OsDMC1, the rice homologue of the yeast DMC1 gene essential for meiosis. Sexual Plant Reproduction 13, 285–288.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Doherty AJ, Serpell LC, Ponting CP (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Research 24, 2488–2497.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dosanjh MK, Collins DW, Fan WF, Lennon GG, Albala JS, Shen ZY, Schild D (1998) Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Research 26, 1179–1184.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Doutriaux MP, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Molecular & General Genetics 257, 283–291.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Durrant WE, Wang S, Dong XN (2007) Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proceedings of the National Academy of Sciences of the United States of America 104, 4223–4227.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Crossref | GoogleScholarGoogle Scholar | open url image1

Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the RAD51 recombination protein during meiotic prophase. The Plant Cell 11, 809–824.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annual Review of Plant Biology 57, 267–302.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Karlin S, Brocchieri L (1996) Evolutionary conservation of RecA genes in relation to protein structure and function. Journal of Bacteriology 178, 1881–1894.
CAS | PubMed |
open url image1

Kinebuchi T, Kagawa W, Kurumizaka H, Yokoyama S (2005) Role of the N-terminal domain of the human DMC1 protein in octamer formation and DNA binding. Journal of Biological Chemistry 280, 28382–28387.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kurumizaka H, Aihara H, Ikawa S, Kashima T, Bazemore LR, Kawasaki K, Sarai A, Radding CM, Shibata T (1996) A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. Journal of Biological Chemistry 271, 33515–33524.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, Meeley RB, McElver J, Bowen B, Cande WZ, Schnable PS (2007) Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 176, 1469–1482.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Li WX, Yang XH, Lin ZG, Timofejeva L, Xiao R, Makaroff CA, Ma H (2005) The AtRAD51C gene is required for normal meiotic chromosome synapsis and double-stranded break repair in Arabidopsis. Plant Physiology 138, 965–976.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lin ZG, Kong HZ, Nei M, Ma H (2006) Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proceedings of the National Academy of Sciences of the United States of America 103, 10328–10333.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD , et al. (1998) XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Molecular Cell 1, 783–793.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annual Review of Biochemistry 71, 71–100.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

March TJ, Able JA, Schultz CJ, Able AJ (2007) A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains. Proteomics 7, 3800–3808.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Miller KA, Sawicka D, Barsky D, Albala JS (2004) Domain mapping of the RAD51 paralog protein complexes. Nucleic Acids Research 32, 169–178.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ogawa T, Wabiko H, Tsurimoto T, Horii T, Masukata H, Ogawa H (1979) Characteristics of purified RecA protein and the regulation of its synthesis in vivo. Cold Spring Harbor Symposia on Quantitative Biology 43, 909–915.
CAS | PubMed |
open url image1

Osakabe K, Yoshioka T, Ichikawa H, Toki S (2002) Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana. Plant Molecular Biology 50, 69–79.
Crossref | GoogleScholarGoogle Scholar | open url image1

Osakabe K, Abe K, Yamanouchi H, Takyuu T, Yoshioka T , et al. (2005) Arabidopsis Rad51B is important for double-strand DNA breaks repair in somatic cells. Plant Molecular Biology 57, 819–833.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theoretical and Applied Genetics 101, 1100–1108.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287–293.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pezza RJ, Petukhova GV, Ghirlando R, Camerini-Otero RD (2006) Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. Journal of Biological Chemistry 281, 18426–18434.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pittman DL, Weinberg LR, Schimenti JC (1998) Identification, characterization and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics 49, 103–111.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Roca AI , Cox MM (1997) RecA protein: structure, function, and role in recombinational DNA repair. In ‘Progress in nucleic acid research and molecular biology. Vol. 56’. (Eds WE Cohn, K Moldave) pp. 129–223. (Academic Press: San Diego)

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
CAS | PubMed |
open url image1

Sato S, Hotta Y, Tabata S (1995) Structural analysis of a RecA-like gene in the genome of Arabidopsis thaliana. DNA Research 2, 89–93.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shao XG, Grishin NV (2000) Common fold in helix-hairpin-helix proteins. Nucleic Acids Research 28, 2643–2650.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shibata T, DasGupta C, Cunningham RP, Radding CM (1979) Purified Escherichia coli RecA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proceedings of the National Academy of Sciences of the United States of America 76, 1638–1642.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sidhu GK, Rustgi S, Shafqat MN, von Wettstein D, Gill KS (2008) Fine structure mapping of a gene-rich region of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes. Proceedings of the National Academy of Sciences of the United States of America 105, 5815–5820.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sutton T, Whitford R, Baumann U, Dong CM, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. The Plant Journal 36, 443–456.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tarsounas M, Munoz P, Claas A, Smiraldo PG, Pittman DL, Blasco MA, West SC (2004) Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117, 337–347.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Terasawa M, Shinohara A, Hotta Y, Ogawa H, Ogawa T (1995) Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes & Development 9, 925–934.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1, 945–951.
CAS | PubMed |
open url image1

Yu X, Jacobs SA, West SC, Ogawa T, Egelman EH (2001) Domain structure and dynamics in the helical filaments formed by RecA and RAD51 on DNA. Proceedings of the National Academy of Sciences of the United States of America 98, 8419–8424.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhang XP, Lee KI, Solinger JA, Kiianitsa K, Heyer WD (2005) Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding. Journal of Biological Chemistry 280, 26303–26311.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zuckerkandl E , Pauling L (1965) Evolutionary divergence and convergence in proteins. In ‘Evolving genes and proteins’. (Eds V Bryson, HJ Vogel) pp. 97–166. (Academic Press: New York)