Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew

Angela Feechan A , Angelica M. Jermakow A , Laurent Torregrosa B , Ralph Panstruga C and Ian B. Dry A D
+ Author Affiliations
- Author Affiliations

A CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia.

B UMR BEPC, campus-Agro-M/INRA, Montpellier, CEDEX 01, France.

C Max-Planck-Institut für Züchtungsforschung, Department of Plant Microbe Interactions, D-50829 Köln, Germany.

D Corresponding author. Email: ian.dry@csiro.au

Functional Plant Biology 35(12) 1255-1266 https://doi.org/10.1071/FP08173
Submitted: 20 June 2008  Accepted: 9 September 2008   Published: 16 December 2008

Abstract

The European cultivated grapevine, Vitis vinifera L., is a host for the powdery mildew pathogen Erisyphe necator, which is the most economically important fungal disease of viticulture. MLO proteins mediate powdery mildew susceptibility in the model plant species Arabidopsis and the crop plants barley and tomato. Seven VvMLO cDNA sequences were isolated from grapevine and were subsequently identified as part of a 17 member VvMLO gene family within the V. vinifera genome. Phylogenetic analysis of the 17 VvMLO genes in the grape genome indicated that the proteins they encode fall into six distinct clades. The expression of representative VvMLOs from each clade were analysed in a range of grape tissues, as well as in response to a range of biotic and abiotic factors. The VvMLOs investigated have unique, but overlapping tissue expression patterns. Expression analysis of VvMLO genes following E. necator infection identified four upregulated VvMLOs which are orthologous to the Arabidopsis AtMLO2, AtMLO6 and AtMLO12 and tomato SlMLO1 genes required for powdery mildew susceptibility. This suggests a degree of functional redundancy between the proteins encoded by these genes in terms of susceptibility to powdery mildew, and, as such, represent potential targets for modification to generate powdery mildew resistant grapevines.

Additional keywords: Erysiphe necator, grapevine, MLO, powdery mildew.


Acknowledgements

This work was funded by the Grape and Wine Research Development Corporation. We thank Nicole Kempster for excellent technical assistance. In addition we thank Dr Paul Boss and Dr Chris Davies for critical reading of the manuscript.


References


An Q, Hückelhoven R, Kogel KH, van Bel AJ (2006) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cellular Microbiology 8, 1009–1019.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstadler A , et al. (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Molecular Plant-Microbe Interactions 21, 30–39.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics 111, 370–377.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proceedings of the National Academy of Sciences of the United States of America 102, 3135–3140.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M , et al. (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chen Z, Hartmann HA, Wu MJ, Friedman EJ, Chen JG, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Molecular Biology 60, 583–597.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chong J, Le Henanff G, Bertsch C, Walter B (2008) Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiology and Biochemistry 46, 469–481.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E , et al. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J , et al. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics 38, 716–720.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Davies C, Robinson SP (1996) Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiology 111, 275–283.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry 274, 34993–35004.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C , et al. (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. Journal of Molecular Evolution 56, 77–88.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics 104, 610–618.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Elliott C, Zhou F, Spielmeyer W, Panstruga R, Schulze-Lefert P (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Molecular Plant-Microbe Interactions 15, 1069–1077.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Felsenstein J (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166. open url image1

Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts – amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences of the United States of America 85, 8998–9002.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hückelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiology 119, 1251–1260.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2 − from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences of the United States of America 94, 4800–4805.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jaillon O, Aury JM, Noel B, Policriti A, Clapet C , et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jørgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63, 141–152.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS , et al. (2002a) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. Journal of Biological Chemistry 277, 19304–19314.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kim MC, Panstruga R, Elliott C, Müller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002b) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447–451.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kobayashi I, Hakuno H (2003) Actin-related defense mechanism to reject penetration attempt by a non-pathogen is maintained in tobacco BY-2 cells. Planta 217, 340–345.
CAS | PubMed |
open url image1

Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell 2, 437–445.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kwon C, Bednarek P, Schulze-Lefert P (2008) Secretory pathways in plant immune responses. Plant Physiology 147, 1575–1583.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M , et al. (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180–1183.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annual Review of Cell and Developmental Biology 23, 147–174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Liu Q, Zhu H (2008) Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409, 1–10.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lyngkjaer MF, Newton AC, Atzema JL, Baker SJ (2000) The barley mlo-gene: an important powdery mildew resistance source. Agronomie 20, 745–756.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J , et al. (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal of Experimental Botany 58, 1999–2010.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiology 144, 1132–1143.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Panstruga R (2005a) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Molecular Biology 59, 485–500.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Panstruga R (2005b) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochemical Society Transactions 33, 389–392.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiology 129, 1076–1085.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430, 887–891.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pratelli R, Sutter JU, Blatt MR (2004) A new catch in the SNARE. Trends in Plant Science 9, 187–195.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in ArabidopsisColletotrichum interactions acts at the cell periphery and requires actin filament function. Molecular Plant-Microbe Interactions 19, 270–279.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Stein M, Dittgen J, Sánchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. The Plant Cell 18, 731–746.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13, 63–68.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W – Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proceedings of the National Academy of Sciences of the United States of America 97, 1897–1902.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Winterhagen P, Howard SF, Qui W, Kovács LG (2008) Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection. American Journal of Enology and Viticulture 59, 159–168.
CAS |
open url image1

Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. The Plant Cell 10, 585–598.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1