Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Evaluation of a turbid medium model to simulate light interception by walnut trees (hybrid NG38 × RA and Juglans regia) and sorghum canopies (Sorghum bicolor) at three spatial scales

Didier Combes A D , Michaël Chelle B , Hervé Sinoquet C E and Claude Varlet-Grancher A
+ Author Affiliations
- Author Affiliations

A INRA, UR4 URP3F, Equipe d’Ecophysiologie des Plantes Fourragères, BP 6, F-86600 Lusignan, France.

B INRA, UMR1091 Environnement et Grandes cultures, F-78850 Thiverval-Grignon, France.

C INRA, UMR547 PIAF, F-63100 Clermont Ferrand, France.

D Corresponding author. Email: didier.combes@lusignan.inra.fr

E In memoriam: Hervé Sinoquet (1961–2008). Hervé Sinoquet died on 14 September 2008. He was pleased that this study was a part of the FPB special issue on FSPM. The co-authors dedicate this paper to his memory and to his significant contribution to the scientific community working on radiative transfer and plant architecture. Thank you Hervé.

This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Functional Plant Biology 35(10) 823-836 https://doi.org/10.1071/FP08059
Submitted: 8 March 2008  Accepted: 29 July 2008   Published: 11 November 2008

Abstract

Light is one of the most important components to be included in functional–structural plant models that simulate the biophysical processes, such as photosynthesis, evapotranspiration and photomorphogenesis, involved in plant growth and development. In general, in these models, light is treated using a turbid medium approach in which radiation attenuation is described by the Beer–Lambert law. In the present study, we assessed the hypothesis of leaf random dispersion in the Beer–Lambert law at the whole-canopy, horizontal-layer and local scales. We compared two calculation methods of radiation attenuation: a 3D turbid medium model using the Beer–Lambert law and the other based on a projective method. The two models were compared by applying the calculations to two walnut trees and two sorghum canopies, which have contrasting structural characteristics. The structures of these canopies were measured in 3D to take into account the arrangement and orientation features of the plant elements. The assumptions made by the Beer–Lambert law allowed adequate simulation of light interception in a structure with little overlapping at the horizontal-layer and whole-canopy scales. At the local scale, discrepancies between the turbid medium model and the model based on a virtual plant were reduced with an adequate choice of structural parameters, such as the leaf inclination distribution function.

Additional keywords: Beer–Lambert, computer model, radiative transfer, 3D, virtual plant.


References


Andrieu B, Sinoquet H (1993) Evaluation of structure description requirements for predicting gap fraction of vegetation canopies. Agricultural and Forest Meteorology 65, 207–227.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bonhomme R, Varlet-Grancher C (1978) Estimation of gramineous crop geometry by plant profiles including leaf width variations. Photosynthetica 8(3), 193–196. open url image1

Brunner A (1998) A light model for spatially explicit forest stand models. Forest Ecology and Management 107, 19–46.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cescatti A (1997) Modelling the radiative transfer in discontinuous canopies asymmetric crowns. I. Model structure and algorithms. Ecological Modelling 101, 263–274.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chandrasekhar S (1950) ‘Radiative transfer.’ (Clarendon Press: Oxford)

Chelle M (1997) Développement d’un modèle de radiosité mixte pour simuler la distribution du rayonnement dans les couverts végétaux. Thèse de 3e cycle, Université de RENNES I: 154.

Chelle M (2005) Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for? The New Phytologist 166(3), 781–790.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chelle M, Andrieu B (1998) The nested radiosity model for the distribution of light within plant canopies. Ecological Modelling 111, 75–91.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chelle M, Andrieu B, Bouatouch K (1998) Nested radiosity for plant canopies. The Visual Computer 14(3), 109–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chelle M, Evers J, Combes D, Varlet-Grancher C, Vos J, Andrieu B (2007) Simulation of the three-dimensional distribution of the red : far-red ratio within crop canopies. The New Phytologist 176, 223–234.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chen JM, Blanken PD, Black TA, Guilbeault M, Chen S (1997) Radiation regime and canopy architecture in a boreal aspen forest. Agricultural and Forest Meteorology 86, 107–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen SG, Impens I, Ceulemans R, Kockelbergh F (1993) Measurement of gap fraction of fractal generated canopies using digitalized image analysis. Agricultural and Forest Meteorology 65, 245–259.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen SG, Ceulemans R, Impens I (1994) A fractal-based populus canopy structure model for the calculation of light interception. Forest Ecology and Management 69, 97–110.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cohen S, Mosoni P, Meron M (1995) Canopy clumpiness and radiation penetration in a young hedgerow apple orchard. Agricultural and Forest Meteorology 76, 185–200.
Crossref | GoogleScholarGoogle Scholar | open url image1

Combes D, Sinoquet H, Varlet-Grancher C (2000) Preliminary measurement and simulation of the spatial distribution of the Morphogenetically Active Radiation (MAR) within an isolated tree canopy. Annals of Forest Science 57(5–6), 497–511.
Crossref | GoogleScholarGoogle Scholar | open url image1

De Wit CT (1965). ‘Photosynthesis of leaf canopies.’ (Centre for Agricultural Publishing and Documentation: Wageningen)

Drouet J-L (2003) MODICA and MODANCA: modelling the three-dimensional shoot structure of graminaceous crops from two methods of plant description. Field Crops Research 83(2), 215–222.
Crossref | GoogleScholarGoogle Scholar | open url image1

Espana ML, Baret F, Aries F, Chelle M, Andrieu B, Prévot L (1999) Modeling maize canopy 3D architecture – application to reflectance simulation. Ecological Modelling 122(1–2), 25–43.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fukai S, Loomis RS (1976) Leaf display and light environments in row-planted cotton communities. Agricultural Meteorology 17, 353–379.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gastellu-Etchegorry JP, Demarrez V, Pinel V, Zagolski F (1996) Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sensing of Environment 58, 131–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gautier H, Mech R, Prusinkiewicz P, Varlet-Grancher C (2000) 3D architectural modelling of aerial photomorphogenesis in white clover (Trifolium repens L.) using L-systems. Annals of Botany 85, 359–370.
Crossref | GoogleScholarGoogle Scholar | open url image1

Godin C, Costes E, Caraglio Y (1997) Exploring plant architecture databases with the AMAPmod: an outline. Silva Fennica 31(3), 355–366. open url image1

Green SR (1993) Radiation balance, transpiration and photosynthesis of an isolated tree. Agricultural and Forest Meteorology 64, 201–221.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gutschick VP, Barron MH, Waechter DA, Wolf MA (1985) Portable monitor for solar radiation that accumulates irradiance histograms for 32 leaf-mounted sensors. Agricultural and Forest Meteorology 33, 281–290.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hodges T, Evans DW (1990) Light interception model for estimating the effects of row spacing on plant competition in maize. Journal of Production Agriculture 3(2), 190–195. open url image1

Ivanov N, Boissard P, Chapron M, Andrieu B (1995) Computer stereo plotting for 3-D reconstruction of a maize canopy. Agricultural and Forest Meteorology 75, 85–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Johnson RS, Lasko AN (1991) Approaches to modeling light interception in orchards. HortScience 26(8), 1002–1004. open url image1

Kern SO, Hovenden MJ, Jordan GJ (2004) The impacts of leaf shape and arrangement on light interception and potential photosynthesis in southern beech (Nothofagus cunninghamii). Functional Plant Biology 31(5), 471–480.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kimes DS, Kirchner JA (1982) Radiative transfer model for heterogeneous 3-D scenes. Applied Optics 21(22), 4119–4129. open url image1

Kimes DS, Ranson KJ, Smith JA (1980) A Monte Carlo calculation of the effects of canopy geometry on PhAR absorption. Photosynthetica 14(1), 55–64. open url image1

Knyazikhin Y, Miesen G, Panfyorov O, Gravenhorst G (1997) Small-scale study of three-dimensional distribution of photosyntetically active radiation in a forest. Agricultural and Forest Meteorology 88, 215–239.
Crossref | GoogleScholarGoogle Scholar | open url image1

Knyazikhin Y, Kranigk J, Myneni RB, Panfyorov O, Gravenhorst G (1998) Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies. Journal of Geophysical Research 103(D6), 6133–6144.
Crossref | GoogleScholarGoogle Scholar | open url image1

Larocque GR (2000) Performance of young jack pine trees originating from two different branch angle traits under different intensities of competition. Annals of Forest Science 57(7), 635–649.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lemeur R (1970) Effects of spatial leaf distribution on penetration and interception of direct radiation. In ‘Proceedings of the UNESCO Symposium on Plant Response to Climatic Factors, Uppsala (15–20 September)’. pp. 349–356. (UNESCO: Paris)

Lemeur R (1973) A method for simulating the direct solar radiation regime in sunflower, Jerusalem artichoke, corn and soybean canopies using actual stand structure data. Agricultural Meteorology 12, 229–247.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li S, Kurata K, Takakura T (2000) Direct solar radiation penetration into row crop canopies in a lean-to greenhouse. Agricultural and Forest Meteorology 100, 243–253.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li X, Strahler AH (1987) Modeling the gap probability of a discontinuous vegetation canopy. Geoscience and Remote Sensing, IEEE Transactions 26, 161–170.
Crossref |
open url image1

Monsi M, Saeki S (1953) Über den lichtfaktor in den pflanzengesellschaften und seine Bedeutung für die stoffproduktion. Japanese Journal of Botany 14, 22–52. open url image1

Myneni RB, Ross J, Asrar G (1989) A review on the theory of photon transport in leaf canopies in slab geometry. Agricultural and Forest Meteorology 45, 1–153.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agricultural and Forest Meteorology 8, 25–38. open url image1

Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. The New Phytologist 166(3), 791–800.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pinty B, Godron N, Widlowski J-L, Bacour C, Gascon F , et al. (2001) The RAdiation transfer Model Intercomparison (RAMI) exercise. Journal of Geophysical Research 106(D11), 11937–11956.
Crossref | GoogleScholarGoogle Scholar | open url image1

Polhemus I (1993). ‘3SPACE Fastrak User’s Manual.’ (Polhemus Inc.: Colchester, VT)

Prusinkiewicz P , Hanan J (1989). ‘Lindenmayer systems, fractals, and plants.’ (Springer-Verlag: New York)

Roden JS, Pearcy RW (1993) Photosynthetic gas-exchange response of poplars to steady-state and dynamic light environments. Oecologia 93(2), 208–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ross J (1981). ‘The radiation regime and architecture of plant stands.’ (Dr Junk Publishers: The Hague)

Sinoquet H, Bonhomme R (1992) Modeling radiative transfer in mixed and row intercropping systems. Agricultural and Forest Meteorology 62, 219–240.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sinoquet H, Moulia B, Bonhomme R (1991) Estimating the three-dimensional geometry of a maize crop as an input of radiation models: comparison between three-dimensional digitizing and plant profiles. Agricultural and Forest Meteorology 55, 233–249.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sinoquet H, Rivet P, Godin C (1997) Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica 31(3), 265–273. open url image1

Sinoquet H, Thanisawanyangkura S, Mabrouk H, Kasemsap P (1998) Characterization of the light environment in canopies using 3D digitising and image processing. Annals of Botany 82, 203–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sinoquet H, Le Roux X, Adam B, Ameglio T, Daudet FA (2001) RATP, a model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: application to an isolated tree crown. Plant, Cell & Environment 24, 395–406.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sinoquet H, Sonohat G, Phattaralerphong J, Godin C (2005) Foliage randomness and light interception in 3-D digitized trees: an analysis from multiscale discretization of the canopy. Plant, Cell & Environment 28(9), 1158–1170.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sinoquet H, Stephan J, Sonohat G, Lauri PE, Monney Ph (2007) Simple equations to estimate light interception by isolated trees from canopy structure features: assessment with three-dimensional digitized apple trees. The New Phytologist 175(1), 94–106.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stamper JH, Allen JC (1979) A model of the daily photosynthetic rates in a tree. Agricultural and Forest Meteorology 20, 459–481. open url image1

Thanisawanyangkura S, Sinoquet H, Rivet P, Cretenet M, Jallas E (1997) Leaf orientation and sunlit leaf area distribution in cotton. Agricultural and Forest Meteorology 86, 1–15.
Crossref | GoogleScholarGoogle Scholar | open url image1

Utsugi H (1999) Angle distribution of foliage in individual Chamaecyparis obtuse canopies and effect of angle on diffuse light penetration. Trees – Structure and Function 14(1), 1–9.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang YP (2003) A comparison of three different canopy radiation models commonly used in plant modeling. Functional Plant Biology 30(2), 143–152.
Crossref | GoogleScholarGoogle Scholar | open url image1