Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Biogenic CO2 flux uncertainty: numerical experiments and validation over south-eastern South America

Nahuel E. Bautista https://orcid.org/0000-0002-3422-1579 A B * , Juan J. Ruiz B C D , Paola V. Salio B C D , Lucas J. Burgos E and María I. Gassmann A B
+ Author Affiliations
- Author Affiliations

A Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

B Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Avenida Intendente Güiraldes 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.

C Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET‒Universidad de Buenos Aires, Buenos Aires, Argentina.

D Instituto Franco–Argentino de Estudios sobre el Clima y sus Impactos (IFAECI), International Research Laboratory (IRL) 3351, Centre de la Recherche Scientifique (CNRS)–CONICET–Institut de Recherche pour le Développement (IRD)–Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.

E Departamento de Tecnología, Universidad Nacional de Luján (UNLu), Buenos Aires, Argentina.

* Correspondence to: nbautista@at.fcen.uba.ar

Handling Editor: Anita Drumond

Journal of Southern Hemisphere Earth Systems Science 74, ES24027 https://doi.org/10.1071/ES24027
Submitted: 23 July 2024  Accepted: 22 November 2024  Published: 18 December 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Bureau of Meteorology. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Understanding carbon dioxide (CO2) surface fluxes is essential in the context of a changing climate. In particular, agriculture significantly contributes to CO2 fluxes. Recently, some studies have focused on understanding how synoptic-scale variability modulates CO2 fluxes associated with vegetation and agriculture, finding that frontal passages and precipitation events exert a strong influence on these fluxes. This variability is particularly relevant in the Argentinean Pampas, where large CO2 fluxes associated with extensive agriculture combine with strong synoptic variability. Numerical modelling provides a valuable tool for investigating surface CO2 fluxes and their variability, despite the uncertainties associated with the model’s limitations. In this work, we investigate simulated CO2 fluxes in the Argentinean Pampas using the Weather Research and Forecasting Model (WRF) coupled with the Vegetation, Respiration and Photosynthesis Model (VPRM) over three case studies representing different synoptic-scale conditions. In addition, we estimate the uncertainty in the simulations by comparing simulated CO2 fluxes using various WRF configurations and the ERA5 reanalysis. We found that the synoptic-scale conditions have a considerable impact on the magnitude of fluxes as well as the simulation uncertainty. Uncertainties in simulated CO2 fluxes can be as high as 60%, being larger at sunrise and sunset. Also, the largest uncertainty is associated with a case with a cold frontal passage and widespread precipitation. These results allow a more accurate estimation of CO2 flux uncertainty, which is key to understanding the effects of climate change.

Keywords: carbon dioxide, ecosystem respiration, ERA5 reanalysis, frontal passages, gross primary productivity, model validation, model uncertainties, net ecosystem exchange, numerical modelling, sensitivity analysis, Weather Research and Forecasting, WRF.

References

Ahmadov R, Gerbig C, Kretschmer R, Körner S, Rödenbeck C, Bousquet P, Ramonet M (2009) Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2. Biogeosciences 6(5), 807-817.
| Crossref | Google Scholar |

Alvarez Imaz M, Salio P, Dillon ME, Fita L (2021) The role of atmospheric forcings and WRF physical set-up on convective initiation over Córdoba, Argentina. Atmospheric Research 250, 105335.
| Crossref | Google Scholar |

Baldocchi DD (2020) How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology 26(1), 242-260.
| Crossref | Google Scholar | PubMed |

Baldocchi D, Chu H, Reichstein M (2018) Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agricultural and Forest Meteorology 249, 520-533.
| Crossref | Google Scholar |

Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdisciplinary Reviews: Climate Change 6(2), 151-169.
| Crossref | Google Scholar |

Bautista NE, Gassmann MI, Pérez CF (2023) Gross primary production, ecosystem respiration, and net ecosystem production in a southeastern South American salt marsh. Estuaries and Coasts 46, 1923-1937.
| Crossref | Google Scholar |

Blázquez J, Solman SA (2019) Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Climate Dynamics 52, 5849-5860.
| Crossref | Google Scholar |

Canadell JG, Monteiro PMS, Costa MH, Cotrim da Cunha L, Cox PM, Eliseev AV, Henson S, Ishii M, Jaccard S, Koven C, Lohila A, Patra PK, Piao S, Rogelj J, Syampungani S, Zaehle S, Zickfeld K (2021) Global Carbon and other Biogeochemical Cycles and Feedbacks. In ‘Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, B Zhou) pp. 673–816. (Cambridge University Press: Cambridge, UK, and New York, NY, USA) 10.1017/9781009157896.007

Casaretto G, Dillon ME, Salio P, Skabar YG, Nesbitt SW, Schumacher RS, García CM, Catalini C (2022) High-resolution NWP forecast precipitation comparison over complex terrain of the Sierras de Córdoba during RELAMPAGO-CACTI. Weather and Forecasting 37(2), 241-266.
| Crossref | Google Scholar |

Chevallier F, Remaud M, O’Dell CW, Baker D, Peylin P, Cozic A (2019) Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics 19(22), 14233-14251.
| Crossref | Google Scholar |

Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum 3, 104606 Available at https://archive.org/details/nasa_techdoc_19950009331.
| Google Scholar |

Coniglio MC, Correia J, Jr, Marsh PT, Kong F (2013) Verification of convection – allowing WRF model forecasts of the planetary boundary layer using sounding observations. Weather and Forecasting 28(3), 842-862.
| Crossref | Google Scholar |

Crippa M, Guizzardi D, Solazzo E, Muntean M, Schaaf E, Monforti-Ferrario F, Banja M, Olivier J, Grassi G, Rossi S, Vignati E (2021) ‘GHG emissions of all world countries.’ (Publications Office of the European Union) Available at https://publications.jrc.ec.europa.eu/repository/handle/JRC126363

Dayalu A, Munger JW, Wofsy SC, Wang Y, Nehrkorn T, Zhao Y, McElroy MB, Nielsen CP, Luus K (2018) Assessing biotic contributions to CO 2 fluxes in northern China using the Vegetation, Photosynthesis and Respiration Model (VPRM-CHINA) and observations from 2005 to 2009. Biogeosciences 15(21), 6713-6729.
| Crossref | Google Scholar |

Dillon ME, Matsudo C, García Skabar Y, Sacco M (2020) Implementación del sistema de pronóstico numérico en el HPC: Configuración de los pronósticos determinísticos. Nota Técnica SMN 2020-78. (Servicio Meteorológico Nacional: Buenos Aires, Argentina) Available at http://hdl.handle.net/20.500.12160/1402 [In Spanish with abstract in Spanish and English]

Dillon ME, Maldonado P, Corrales P, Skabar YG, Ruiz J, Sacco M, Cutraro F, Mingari L, Matsudo C, Vidal L, Rugna M (2021) A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign. Atmospheric Research 264, 105858.
| Crossref | Google Scholar |

Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences 46, 3077-3107.
| Crossref | Google Scholar |

Fernández ME, Gentili JO, Casado AL, Campo AM (2021) Global horizontal irradiation: spatio-temporal variability on a regional scale in the south of the Pampeana region (Argentina). AUC Geographica 56(2), 220-233.
| Crossref | Google Scholar |

Ferreyra MFG, Curci G, Lanfri M, et al. (2016) First implementation of the WRF-CHIMERE-EDGAR modeling system over Argentina. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(12), 5304-5314.
| Crossref | Google Scholar |

Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Gregor L, Hauck J, Le Quéré C, et al. (2022) Global carbon budget 2022. Earth System Science Data 14(11), 4811-4900.
| Crossref | Google Scholar |

Giannaros TM, Melas D, Daglis IA, Keramitsoglou I, Kourtidis K (2013) Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmospheric Environment 73, 103-111.
| Crossref | Google Scholar |

Gourdji SM, Karion A, Lopez‐Coto I, Ghosh S, Mueller KL, Zhou Y, Williams CA, Baker IT, Haynes KD, Whetstone JR (2022) A modified Vegetation Photosynthesis and Respiration Model (VPRM) for the eastern USA and Canada, evaluated with comparison to atmospheric observations and other biospheric models. Journal of Geophysical Research: Biogeosciences 127(1), e2021JG006290.
| Crossref | Google Scholar |

Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters 29, 38-1-38-4.
| Crossref | Google Scholar |

He C, Valayamkunnath P, Barlage M, et al. (2023) The community Noah–MP land surface modelling system technical description version 5.0 number. NCAR Technical Note NCAR/TN-575+STR. (National Center for Atmospheric Research: Boulder, CO, USA) 10.5065/ew8g-yr95

Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2023a) ERA5 hourly data on pressure levels from 1940 to present. (Copernicus Climate Change Service, C3S; Climate Data Store, CDS) [Dataset] doi:10.24381/cds.bd0915c6

Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2023b) ERA5 hourly data on single levels from 1940 to present. (Copernicus Climate Change Service, C3S; Climate Data Store, CDS) [Dataset] doi:10.24381/cds.adbb2d47

Hilton TW, Davis KJ, Keller K (2014) Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals. Biogeosciences 11(2), 217-235.
| Crossref | Google Scholar |

Hong S-Y, Lim J-OJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). Jourmal Korean Meteorological Society 42, 129-151 Available at http://uci.or.kr/G704-000384.2006.42.2.006.
| Google Scholar |

Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134, 2318-2341.
| Crossref | Google Scholar |

Hu XM, Gourdji SM, Davis KJ, Wang Q, Zhang Y, Xue M, Feng S, Moore B, Crowell SM (2021) Implementation of improved parameterization of terrestrial flux in WRF‐VPRM improves the simulation of nighttime CO2 peaks and a daytime CO2 band ahead of a cold front. Journal of Geophysical Research: Atmospheres 126(10), e2020JD034362.
| Crossref | Google Scholar |

Hurwitz MD, Ricciuto DM, Bakwin PS, Davis KJ, Wang W, Yi C, Butler MP (2004) Transport of carbon dioxide in the presence of storm systems over a northern Wisconsin forest. Journal of the Atmospheric Sciences 61(5), 607-618.
| Crossref | Google Scholar |

Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141, 254-268.
| Crossref | Google Scholar | PubMed |

Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. Journal of Geophysical Research 113, D13103.
| Crossref | Google Scholar |

Janjic ZI (1994) The Step-Mountain Eta Coordinate Model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review 122, 927-945.
| Crossref | Google Scholar |

Janjic Z (2019) The surface layer parameterization in the NMM models. Office Note 497, NOAA/NWS/NCEP Environmental Modeling Center, National Oceanic and Atmospheric Administration, US Department of Commerce, College Park, MD, USA. 10.25923/9qej-k604

Jimenez PA, Dudhia J, Gonzalez-Rouco JF, Navarro J, Montavez JP, Garcia-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Monthly Weather Review 140, 898-918.
| Crossref | Google Scholar |

Ju C, Li H, Li M, Liu Z, Ma Y, Mamtimin A, Sun M, Song Y (2022) Comparison of the forecast performance of WRF using Noah and Noah-MP land surface schemes in Central Asia arid region. Atmosphere 13(6), 927.
| Crossref | Google Scholar |

Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology 16(1), 187-208.
| Crossref | Google Scholar |

Lee TR, De Wekker SF, Andrews AE, Kofler J, Williams J (2012) Carbon dioxide variability during cold front passages and fair weather days at a forested mountain top site. Atmospheric Environment 46, 405-416.
| Crossref | Google Scholar |

Li X, Hu X-M, Cai C, Jia Q, Zhang Y, Liu J, Xue M, Xu J, Wen R, Crowell SM (2020) Terrestrial CO2 fluxes, concentrations, sources and budget in northeast China: observational and modeling studies. Journal of Geophysical Research: AtmospheresAnnals of Botany 125(6), e2019JD031686.
| Crossref | Google Scholar |

Lim K-SS, Hong S-Y (2010) Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review 138, 1587-1612.
| Crossref | Google Scholar |

Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Functional Ecology 8, 315-323.
| Crossref | Google Scholar |

Long Q, Wang F, Ge W, Jiao F, Han J, Chen H, Roig FA, Abraham EM, Xie M, Cai L (2023) Temporal and spatial change in vegetation and its interaction with climate change in Argentina from 1982 to 2015. Remote Sensing 15(7), 1926.
| Crossref | Google Scholar |

Luque SE, Fita L, Pineda Rojas AL (2024) Performance evaluation of the WRF model under different physical schemes for air quality purposes in Buenos Aires, Argentina. Atmósfera 38, 235-262.
| Crossref | Google Scholar |

Magnaldo MA, Libois Q, Riette S, Lac C (2023) Evaluation of surface shortwave downward radiation forecasts by the numerical weather prediction model AROME. EGUsphere 2023, 1-32.
| Crossref | Google Scholar |

Mahadevan P, Wofsy SC, Matross DM, Xiao X, Dunn AL, Lin JC, Gerbig C, Munger JW, Chow VY, Gottlieb EW (2008) A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles 22(2), GB2005.
| Crossref | Google Scholar |

Markowski P, Richardson Y (2011) ‘Mesoscale meteorology in midlatitudes.’ (Wiley) 10.1002/9780470682104

Maroneze R, Acevedo OC, Costa FD, Puhales FS, Anabor V, Lemes DN, Mortarini L (2021) How is the two-regime stable boundary layer reproduced by the different turbulence parametrizations in the weather research and forecasting model? Boundary-Layer Meteorology 178, 383-413.
| Crossref | Google Scholar |

Mendes J, Zwane N, Mabasa B, Tazvinga H, Walter K, Morcrette CJ, Botai J (2023) An analysis of the effects of clouds in high-resolution forecasting of surface short-wave radiation in South Africa. Journal of Applied Meteorology and Climatology 63, 227-244.
| Crossref | Google Scholar |

Merino R (2024) Desarrollo de un modelo acoplado de vegetación–atmósfera para estudiar los flujos de dióxido de carbono en la región pampeana. PhD thesis, Universidad de Buenos Aires, Buenos Aires, Argentina. [In Spanish]

Mierzwiak M, Kroszczyński K, Araszkiewicz A (2023) WRF Parameterizations of short-term solar radiation forecasts for cold fronts in central and eastern Europe. Energies 16(13), 5136.
| Crossref | Google Scholar |

Ministerio de Ambiente y Desarrollo Sostenible (2021) Cuarto informe bienal de actualización de Argentina a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). Publicación del Ministerio de Ambiente y Desarrollo Sostenible. (MAyDS: Argentina) Available at https://www.argentina.gob.ar/sites/default/files/2022/01/4to_informe_bienal_de_la_republica_argentina.pdf [In Spanish]

Monin AS, Obukhov AM (1954) Основные правила турбулентного перемешивания в приземном слое атмосферы [Basic laws of turbulent mixing in the surface layer of the atmosphere.]. Труды Геофизического Института, Академия наук СССР [Proceedings of the Geophysical Institute, Academy of Sciences of the USSR] 24(151), 163-187 [In Russian].
| Google Scholar |

Müller OV, Lovino MA, Berbery EH (2016) Evaluation of WRF model forecasts and their use for hydroclimate monitoring over southern south America. Weather and Forecasting 31(3), 1001-1017.
| Crossref | Google Scholar |

National Center for Atmospheric Research Earth Observing Laboratory In situ Sensing Facility, Oncley S (2021) NCAR/EOL ISFS Surface Meteorology and Flux Products, 5-minute. Version 2.0. UCAR/NCAR - Earth Observing Laboratory. [Dataset] doi:10.26023/ZPHJ-JW9W-2B0Y

Nesbitt SW, Salio PV, Ávila E, Bitzer P, Carey L, Chandrasekar V, Deierling W, Dominguez F, Dillon ME, Garcia CM, Gochis D (2021) A storm safari in subtropical South America: Proyecto RELAMPAGO. Bulletin of the American Meteorological Society 102(8), E1621-E1644.
| Crossref | Google Scholar |

Oke TR (2002) ‘Boundary layer climates.’ (Routledge) 10.4324/9780203407219

Pal S, Davis KJ, Lauvaux T, Browell EV, Gaudet BJ, Stauffer DR, Obland MD, Choi Y, DiGangi JP, Feng S, Lin B (2020) Observations of greenhouse gas changes across summer frontal boundaries in the eastern United States. Journal of Geophysical Research: Atmospheres 125(5), e2019JD030526.
| Crossref | Google Scholar |

Parazoo NC, Denning AS, Kawa SR, Corbin KD, Lokupitiya RS, Baker IT (2008) Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe. Atmospheric Chemistry and Physics 8, 7239-7254.
| Crossref | Google Scholar |

Peiro H, Crowell S, Schuh A, Baker DF, O’Dell C, Jacobson AR, Chevallier F, Liu J, Eldering A, Crisp D, Deng F (2022) Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7. Atmospheric Chemistry and Physics 22(2), 1097-1130.
| Crossref | Google Scholar |

Perdigão J, Salgado R, Magarreiro C, Soares PM, Costa MJ, Dasari HP (2017) An Iberian climatology of solar radiation obtained from WRF regional climate simulations for 1950–2010 period. Atmospheric Research 198, 151-162.
| Crossref | Google Scholar |

Pessacg NL, Solman SA, Samuelsson P, Sanchez E, Marengo J, Li L, Remedio ARC, Da Rocha RP, Mourao C, Jacob D (2014) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Climate Dynamics 43, 1221-1239.
| Crossref | Google Scholar |

Pleim JE (2007) A combined local and non-local closure model for the atmospheric boundary layer. Part I: model description and testing. Journal of Applied Meteorology and Climatology 46, 1383-1395.
| Crossref | Google Scholar |

Ruiz JJ, Saulo C, Nogués-Paegle J (2010) WRF model sensitivity to choice of parameterization over South America: validation against surface variables. Monthly Weather Review 138(8), 3342-3355.
| Crossref | Google Scholar |

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Liu Z, Berner J, Wang W, Powers JG, Duda MG, Barker DM, Huang X-Y (2019) A description of the advanced research WRF Version 4. NCAR Technical Note NCAR/TN-556+STR. (National Center for Atmospheric Research: Boulder, CO, USA) 10.5065/1dfh-6p97

Stanimirova R, Graesser J, Olofsson P, Friedl MA (2022) Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay. Remote Sensing of Environment 282, 113277.
| Crossref | Google Scholar |

Stull RB (1988) ‘An introduction to boundary layer meteorology. Vol. 13.’ (Springer Science & Business Media) 10.1007/978-94-009-3027-8

Suárez M, Poffo D, Pierobon E, Martina A, Saffe J, Rodríguez A (2022) Wind and gust forecasts assessment of Weather Research and Forecast (WRF) model in Córdoba, Argentina. Asian Journal of Atmospheric Environment 16(1), 2021133.
| Crossref | Google Scholar |

Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In ‘84th AMS Annual Meeting: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction’, 10–15 January 2004, Seattle, WA, USA. Paper 14.2a. (American Meteorological Society) Available at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm

Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Monthly Weather Review 136, 5095-5115.
| Crossref | Google Scholar |

Varble AC, Nesbitt SW, Salio P, Hardin JC, Bharadwaj N, Borque P, DeMott PJ, Feng Z, Hill TC, Marquis JN, Matthews A (2021) Utilizing a storm-generating hotspot to study convective cloud transitions: the CACTI experiment. Bulletin of the American Meteorological Society 102(8), E1597-E1620.
| Crossref | Google Scholar |

Wyszogrodzki AA, Liu Y, Jacobs N, et al. (2013) Analysis of the surface temperature and wind forecast errors of the NCAR-AirDat operational CONUS 4-km WRF forecasting system. Meteorology and Atmospheric Physics 122, 125-143.
| Crossref | Google Scholar |

Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore B, III (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment 89(4), 519-534.
| Crossref | Google Scholar |