Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble

Alejandro Di Luca, Jason P. Evans, Acacia S. Pepler, Lisa V. Alexander and Daniel Argüeso

Journal of Southern Hemisphere Earth Systems Science 66(2) 108 - 124
Published: 2016

Abstract

Due to their large influence on both severe weather and water security along the east coast of Australia, it is increasingly important to understand how East Coast Lows (ECLs) may change over coming decades. Changes in ECLs may occur for a number of reasons including changes in the general atmospheric circulation (e.g. poleward shift of storm tracks) and/or changes in local conditions (e.g. changes in sea surface temperatures). Numerical climate models are the best available tool for studying these changes however, in order to assess future projections, climate model simulations need to be evaluated on how well they represent the historical climatology of ECLs. In this paper, we evaluate the performance of a 15-member ensemble of regional climate model (RCM) simulations to reproduce the climatology of cyclones obtained using three high-resolution reanalysis datasets (ERA-Interim, NASA-MERRA and JRA55). The performance of the RCM ensemble is also compared to results obtained from the global datasets that are used to drive the RCM ensemble (four general circulation model simulations and a low resolution reanalysis), to identify whether they offer additional value beyond the driving data. An existing cyclone detection and tracking algorithm is applied to derive a number of ECL characteristics and assess results at a variety of spatial scales. The RCM ensemble offers substantial improvement on the coarse-resolution driving data for most ECL characteristics, with results typically falling within the range of observational uncertainty, instilling confidence for studies of future projections. The study clearly highlights the need to use an ensemble of simulations to obtain reliable projections and a range of possible future changes.

https://doi.org/10.1071/ES16011

© Commonwealth of Australia represented by the Bureau of Meterology 2016. This is an open access article distributed under the Creative Commons Attribution-NonCommerical-NoDerivatives 4.0 International License (CC BY-NC-ND).

Committee on Publication Ethics

PDF (8 MB) Export Citation

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email

View Dimensions