Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Energy Producers Journal Australian Energy Producers Journal Society
Journal of Australian Energy Producers
 

Session 18. Oral Presentation for: Probabilistic CO2 plume modelling

David Tang A *
+ Author Affiliations
- Author Affiliations

A CO2CRC, Level 3–289 Wellington Parade South, East Melbourne, Vic. 3002, Australia.




Mr David Tang received a BEng in Petroleum Engineering in 2011 and a MEngSc in Project Management in 2016 from the University of New South Wales. He was undertaking a MDataSc at the University of Western Australia before taking a sabbatical to become a father. Prior to joining CO2CRC in 2022, he was an experienced Reservoir Engineer working in the oil and gas industry. He now consults to industry on carbon storage development projects via CO2Tech and is actively involved in carbon and hydrogen storage research. His broad education has helped to develop novel solutions to storage challenges in the subsurface.

* Correspondence to: david.tang@CO2CRC.com.au

Australian Energy Producers Journal 64 https://doi.org/10.1071/EP23364
Published: 7 June 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of Australian Energy Producers.

Abstract

Presented on Wednesday 22 May: Session 18

The Offshore Petroleum and Greenhouse Gas Storage Act 2006 provides the legal framework for carbon dioxide (CO2) storage projects in Australian Commonwealth waters, with the associated regulations and guidelines requiring that applicants for a ‘declaration of an identified storage formation’ consider ‘all migration pathways of which the probability of occurrence is greater than 10%’. The overseas Society of Petroleum Engineer’s CO2 Storage Resources Management System goes further and discusses the concept of modelling not only the subsurface CO2 plume itself but also the attendant pressure effects and displaced formation water, which, in that scheme, comprise part of a wider ‘containment area’. These collective requirements necessitate that the eligible carbon storage resources be assessed probabilistically, a requirement that can result in sizable static and dynamic models that are computationally heavy to simulate. This computational complexity places inherent, practical limitations on using ‘conventional’ probabilistic workflows, such as Monte Carlo simulation or Latin hypercube sampling. To address this limitation, factorial experimental designs were employed in the modelling workflow. Factorial designs are widely used in settings where individual experiments are costly or require prolonged periods and, when implemented correctly, can uncover underlying uncertainty distributions using a minimum number of simulation cases. The efficacy and power of this approach is demonstrated using CO2 injection and migration models for a carbon storage project located in offshore Western Australia, which is in the early development stage. The ability to test potential sensitivities rapidly has proven to be critical in refining and defining the project’s ultimate carbon capture and storage development plan.

To access the Oral Presentation click the link on the right. To read the full paper click here

Keywords: carbon storage, CCS, CCUS, CO2, plume modelling, probabilistic, SRMS, storage resource.

Biographies

EP23364_B1.gif

Mr David Tang received a BEng in Petroleum Engineering in 2011 and a MEngSc in Project Management in 2016 from the University of New South Wales. He was undertaking a MDataSc at the University of Western Australia before taking a sabbatical to become a father. Prior to joining CO2CRC in 2022, he was an experienced Reservoir Engineer working in the oil and gas industry. He now consults to industry on carbon storage development projects via CO2Tech and is actively involved in carbon and hydrogen storage research. His broad education has helped to develop novel solutions to storage challenges in the subsurface.