Register      Login
Australian Energy Producers Journal Australian Energy Producers Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

INTEGRATION OF RESERVOIR AND WELL FLOW SIMULATORS FOR ANALYSIS OF HORIZONTAL WELL PERFORMANCE

G. Sanchez, A. Kabir, E. Nakagawa and Y. Manolas

The APPEA Journal 47(1) 181 - 187
Published: 2007

Abstract

The optimisation of a well’s performance along its life cycle demands improved understanding of processes occurring in the reservoir, near wellbore and inside the well and flow lines. With this purpose, the industry has been conducting, for several years, initiatives towards reservoirwellbore coupled simulations.

This paper proposes a simple way to couple the near wellbore reservoir and the wellbore hydraulics models, which contributes to the optimisation of well completion design (before and while drilling the well) and the maximisation of the well inflow performance during production phases, with support of real-time and historical data. The ultimate goal is the development of an adaptive (self-learning) system capable of integrated, real-time analysis, decision support and control of the wells to maximise productivity and recovery factors at reservoir/field level. At the present stage, the system simulates the inflow performance based on an iterative algorithm. The algorithm links a reservoir simulator to a hydraulics simulator that describes the flow inside the wellbore. The link between both simulators is based on equalisation of flow rates and pressures so that a hydraulic balance solution of well inflow is obtained. This approach allows for full simulation of the reservoir, taking into consideration the petrophysical and reservoir properties, which is then matched with the full pressure profile along the wellbore. This process requires relatively small CPU time and provides very accurate solutions. Finally, the paper presents an application of the system for the design of a horizontal well in terms of inflow profile and oil production when the production is hydraulically balanced.

https://doi.org/10.1071/AJ06011

© CSIRO 2007

Committee on Publication Ethics


Export Citation