Degradation of pentachlorophenol as a model hazardous and recalcitrant organochlorinated pollutant using AgIII
Ileana R. Zamora-Garcia A , Alejandro Alatorre-Ordaz A , Jorge G. Ibanez B C , Julio Cesar Torres-Elguera A , Kazimierz Wrobel A and Silvia Gutierrez-Granados AA Departamento de Quimica Analitica, Unidad Pueblito de Rocha, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada s/n, Col. Pueblito de Rocha, CP 36040 Guanajuato, Mexico.
B Depto. de Ing. y Ciencias Quimicas, Centro Mexicano de Quimica Verde y Microescala, Universidad Iberoamericana, Prol. Reforma 880, 01219 Ciudad de Mexico, Mexico.
C Corresponding author. Email: jorge.ibanez@ibero.mx
Environmental Chemistry 14(8) 476-485 https://doi.org/10.1071/EN17114
Submitted: 24 February 2017 Accepted: 26 October 2017 Published: 21 March 2018
Environmental context. Electrochemistry offers potential applications for environmental remediation. Pentachlorophenol, a highly toxic and recalcitrant halogenated compound, is degraded by a novel oxidant produced electrochemically, and the intermediates and products of the degradation are investigated. Cyclic remediation systems merit further study.
Abstract. The use of electrochemically generated Ag(OH)4− as a strong oxidising agent was evaluated for the treatment of a model hazardous and recalcitrant organochlorinated pollutant, pentachlorophenol (PCP). High-performance liquid chromatography (HPLC), gas chromatography with flame ionisation detection (GC-FID) or with electron capture detection (GC-ECD), gas chromatography with mass spectrometry detection and UV-visible spectroscopy were utilised to investigate intermediates and products generated during such treatment. From these, it was deduced that dechlorination occurred first, followed by an oxidative ring opening at the C=C bond that destabilised the remaining structure and generated tetrachloro-p-benzoquinone, 2,3,5,6-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-trichlorophenol (or 2,3,5-trichlorophenol), 2,4,5-trichlorophenol (or 2,3,6-trichlorophenol) and 2,4-dichlorophenol (or 3,4-dichlorophenol). In contrast to other remediation methods (e.g. incineration) no highly toxic molecules such as dioxins were generated by this novel degradation system.
Additional keywords: analytical chemistry, persistent organic pollutants (POPs).
References
[1] M. Pera-Titus, V. García-Molina, M. A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: A general review Appl. Catal. B 2004, 47, 219.| Degradation of chlorophenols by means of advanced oxidation processes: A general reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKlu7g%3D&md5=5a91f3d5c16f146a43e36dd3e489ae89CAS |
[2] M. Czaplicka, B. Kaczmarczyk, Infrared study of chlorophenols and products of their photodegradation Talanta 2006, 70, 940.
| Infrared study of chlorophenols and products of their photodegradationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyqurrK&md5=0d69df93901ce5ab22966ee98b79820cCAS |
[3] D. W. Connell, Basic Concepts of Environmental Chemistry, 2nd edn 2005 (CRC-Taylor and Francis: Boca Raton, FL).
[4] K. Govindan, M. Raja, M. Noel, E. J. James, Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide J. Hazard. Mater. 2014, 272, 42.
| Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVKnu7w%3D&md5=de8ce218a0288ce1b5ef1c9619ec4f70CAS |
[5] H. Wei, X. Yan, S. He, C. Sun, Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts Catal. Today 2013, 201, 49.
| Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalystsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGisbvP&md5=34c9d7932f614395da7c803d156a4fd4CAS |
[6] J. Folch, M. Yeste, D. Alvira, A. V. de la Torre, M. Bordas, M. López, Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons Neurotoxicology 2009, 30, 451.
| Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neuronsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCjt7s%3D&md5=3f56d53c918437e7178fce8b6b54a740CAS |
[7] J. Niu, Y. Bao, Y. Li, Z. Chai, Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes Chemosphere 2013, 92, 1571.
| Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1OjtLs%3D&md5=b9be77015f0db6ac00ecd537c11fc5c9CAS |
[8] F. J. Benitez, J. L. Acero, F. J. Real, J. García, Kinetics of photodegradation and ozonation of pentachlorophenol Chemosphere 2003, 51, 651.
| Kinetics of photodegradation and ozonation of pentachlorophenolCrossref | GoogleScholarGoogle Scholar |
[9] C. Tai, G. Jiang, Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition Chemosphere 2005, 59, 321.
| Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic conditionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2jsbg%3D&md5=c3637628be3c88945de6b941c98b9221CAS |
[10] M. B. Carvalho, S. Tavares, J. Medeiros, O. Núñez, H. Gallart, M. C. Leitão, Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions J. Hazard. Mater. 2011, 198, 133.
| Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqs7%2FO&md5=d34fdfdeb627f95225521641980aa4c7CAS |
[11] M. Oturan, N. Oturan, C. Lahitte, Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol J. Electroanal. Chem. 2001, 507, 96.
| Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFyitLY%3D&md5=2367b6ed7969a9082d228bfa2343bf81CAS |
[12] J. Gunlazuardi, W. Lindu, Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metal J. Photoch. Photobio. A 2005, 173, 51.
| Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metalCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWnu70%3D&md5=30436f396e935c264a5fa49905e8f88cCAS |
[13] Y. Li, J. Niu, L. Yin, Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals J. Environ. Sci. (China) 2011, 23, 1911.
| Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CrtbzO&md5=27bbeb815304afbe914b6a5ac593ba80CAS |
[14] S. H. Lee, J. B. Carberry, Biodegradation of PCP enhanced by chemical oxidation pretreatment Water Environ. Res. 1992, 64, 682.
| Biodegradation of PCP enhanced by chemical oxidation pretreatmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslOmu78%3D&md5=e857911896115e8d20233c6c4601d08eCAS |
[15] M. Fukushima, K. Tatsumi, Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acid Bioresour. Technol. 2006, 97, 1605.
| Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acidCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Ggsrk%3D&md5=b351fb8c61bb00b91b5a00c7a6a1423bCAS |
[16] A. Oubina, D. Puig, J. Gas, Determination of pentachlorophenol in certified waste waters, soil samples and industrial effluents using ELISA and liquid solid extraction followed by liquid chromatography Anal. Chim. Acta 1997, 346, 49.
| Determination of pentachlorophenol in certified waste waters, soil samples and industrial effluents using ELISA and liquid solid extraction followed by liquid chromatographyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvValtLo%3D&md5=0d46e72da86850a78676d266a32d81c3CAS |
[17] M. Tripathi, S. K. Garg, Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: Spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity Process Biochem. 2013, 48, 496.
| Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: Spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFChu7Y%3D&md5=77b535460274529798e5cf18720a2fc1CAS |
[18] U. D. Patel, S. Suresh, Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor J. Colloid Interface Sci. 2008, 319, 462.
| Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactorCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGmsLg%3D&md5=e74d5afac4cc82d615ddcb53379354d0CAS |
[19] J. Suegara, B.-D. Lee, M. P. Espino, S. Nakai, M. Hosomi, Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theory Chemosphere 2005, 61, 341.
| Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theoryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegtLjN&md5=e73c904d888e34e2aec29aff2bac8f9cCAS |
[20] K. R. Reddy, K. Darko-Kagya, A. Z. Al-Hamdan, Electrokinetic remediation of pentachlorophenol-contaminated clay soil Water Air Soil Pollut. 2011, 221, 35.
| Electrokinetic remediation of pentachlorophenol-contaminated clay soilCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2qs77M&md5=5bfa245daea2bbd0c31aab5e890fda06CAS |
[21] Environmental Protection Agency Priority Pollutant List. Available at https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf, 2014 (verified 19 October 2017).
[22] European Commission Priority Substances and Certain Other Pollutants according to Annex II of Directive 2008/105/EC. Available at http://ec.europa.eu/environment/water/water-framework/priority_substances.htm, 2016 (verified 19 October 2017).
[23] Z. Sun, H. Ge, X. Hu, Y. Peng, Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution Separ. Purif. Tech. 2010, 72, 133.
| Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFCjurw%3D&md5=0feef69b65d7ffb6c9a25d2461308885CAS |
[24] K. Govindan, S. Murugesan, P. Maruthamuthu, Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO2 photocatalyst Mater. Res. Bull. 2013, 48, 1913.
| Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO2 photocatalystCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVelsL4%3D&md5=eee2ab677709d39b6d3ac4c0bc194f6bCAS |
[25] G. L. Cohen, G. Atkinson, The formation and characterization of the tetrahydroxyargentate (III) ion in alkaline solution J. Electrochem. Soc. 1968, 115, 1236.
| The formation and characterization of the tetrahydroxyargentate (III) ion in alkaline solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhs1CqtA%3D%3D&md5=32e55ac7b75a1a99133e4c319205f2acCAS |
[26] L. Kirschenbaum, G. Atkinson, Kinetics of silver (III) complexation by periodate and tellurate ions Inorg. Chem. 1973, 12, 2832.
| Kinetics of silver (III) complexation by periodate and tellurate ionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsV2ru7k%3D&md5=001139cce8355d6d1d8569cf933e5a2aCAS |
[27] L. Kirschenbaum, L. Mrozowski, Kinetics of silver (III) decomposition in dilute acid Inorg. Chem. 1978, 17, 3718.
| Kinetics of silver (III) decomposition in dilute acidCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmt1Wmtbk%3D&md5=d7e45e79e83699fcc2614959af1be800CAS |
[28] E. T. Borish, L. J. Kirschenbaum, Kinetics and mechanism of the reaction between silver (III) and azide ion Inorg. Chem. 1984, 23, 2355.
| Kinetics and mechanism of the reaction between silver (III) and azide ionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksVCjtLs%3D&md5=24a0ee1adfd19f35c5b475f6c9daa141CAS |
[29] J. Rush, L. Kirschenbaum, The reaction of the tetrahydroxoargentate (III) ion with thiosulfate Inorg. Chem. 1985, 24, 744.
| The reaction of the tetrahydroxoargentate (III) ion with thiosulfateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1Slurg%3D&md5=5d8238d8d1b50d3debde5097a630a95dCAS |
[30] L. Kirschenbaum, K. Panda, Kinetics and mechanism of the reaction between butylphenolate anion and tetrahydroxoargentate (III) in aqueous alkaline media J. Chem. Soc., Dalton Trans. 1989, 217.
[31] L. Kirschenbaum, K. Panda, E. Borish, Vicinal dioximate complexes of silver (III) Inorg. Chem. 1989, 28, 3623.
| Vicinal dioximate complexes of silver (III)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlt1WqtL0%3D&md5=512c064de9f0975d34dd306dfd196409CAS |
[32] N. Mehrotra, L. Kirschenbaum, Kinetics and mechanism of the oxidation of hypophosphite ion by the tetrahydroxoargentate (III) ion Inorg. Chem. 1989, 28, 4327.
| Kinetics and mechanism of the oxidation of hypophosphite ion by the tetrahydroxoargentate (III) ionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmsVWisro%3D&md5=2a1193cba7520e71652399f0b554d8ddCAS |
[33] I. Kouadio, L. Kirschenbaum, N. Mehrotra, The oxidation of iodide ion by the tetrahydroxoargentate (III) ion in aqueous alkaline media J. Chem. Soc., Dalton Trans. 1990, 1929.
| The oxidation of iodide ion by the tetrahydroxoargentate (III) ion in aqueous alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltl2lsL8%3D&md5=942bed12c94c295cf31576bb6f37c2a1CAS |
[34] I. Kouadio, L. Kirschenbaum, N. Mehrotra, Silver (III) oxidation of DL-mandelate ion J. Chem. Soc. Perkin Trans. 2 1990, 2123.
| Silver (III) oxidation of DL-mandelate ionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1Wiu7w%3D&md5=d7eb569fa4ef520ca4522a04a9c8b73fCAS |
[35] L. Kirschenbaum, S. Yunfu, The reduction of the tetrahydroxoargentate (III) ion by thiocyanate in aqueous alkaline media Inorg. Chem. 1991, 30, 2360.
| The reduction of the tetrahydroxoargentate (III) ion by thiocyanate in aqueous alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlGku7c%3D&md5=e6769a668077389ce46ee39fb6ec9ffeCAS |
[36] S. Yunfu, L. Kirschenbaum, The oxidation of cyanide ion by silver (III) in alkaline media J. Coord. Chem. 1992, 262, 127.
[37] I. R. Zamora-Garcia, A. Alatorre-Ordaz, J. G. Ibanez, M. G. Garcia-Jimenez, Y. Nosaka, T. Kobayashi, S. Sugita, Thermodynamic and electrochemical study on the mechanism of formation of Ag(OH)4− in alkaline media Electrochim. Acta 2013, 111, 268.
| Thermodynamic and electrochemical study on the mechanism of formation of Ag(OH)4− in alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrurnI&md5=38b5f07b91f84a3d5cab987a6799d3f3CAS |
[38] I. R. Zamora-Garcia, A. Alatorre-Ordaz, J. G. Ibanez, J. C. Torres-Elguera, K. Wrobel, S. Gutierrez-Granados, Efficient degradation of selected dyes using the tetrahydroxoargentate ion, Ag(OH)4− in alkaline media Chemosphere 2018, 191, 400.
| Efficient degradation of selected dyes using the tetrahydroxoargentate ion, Ag(OH)4− in alkaline mediaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1yjsb%2FO&md5=d7a95633dcf27906c6537320d92295e5CAS |
[39] C. Lin, S. Tseng, Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathode Chemosphere 1999, 39, 2375.
| Electrochemically reductive dechlorination of pentachlorophenol using a high overpotential zinc cathodeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Onu7Y%3D&md5=737bda8aa7b2793660bba3e8be15b178CAS |
[40] N. Ross, R. Spackman, M. Hitchman, P. White, An investigation of the electrochemical reduction of pentachlorophenol with analysis by HPLC J. Appl. Electrochem. 1997, 27, 51.
| An investigation of the electrochemical reduction of pentachlorophenol with analysis by HPLCCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFOitb4%3D&md5=1485d9b3fc28c351b34cc75e42576fb5CAS |
[41] A. J. Bard, R. Parsons, J. Jordan, (Eds.) Standard Potentials in Aqueous Solution 1985 (M. Dekker: New York).
[42] J. Hong, D.-G. Kim, C. Cheong, S.-Y. Jung, M.-R. Yoo, K.-J. Kim, T.-K. Kim, Y.-C. Park, Identification of photolytical transformation products of pentachlorophenol in water Anal. Sci. 2000, 16, 621.
| Identification of photolytical transformation products of pentachlorophenol in waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVOit70%3D&md5=9f802e1bddd5e1de6e503515e2550307CAS |
[43] B. G. Kwon, J. H. Lee, A kinetic method for HO2•/O2•¯ determination in advanced oxidation processes Anal. Chem. 2004, 76, 6359.
| A kinetic method for HO2•/O2•¯ determination in advanced oxidation processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvF2rtLk%3D&md5=927ff7079400ec622058a7280213ae90CAS |
[44] D. A. Armstrong, R. E. Huie, S. Lymar, W. H. Koppenol, G. Merényi, P. Neta, D. M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals Bioinorg. React. Mech. 2013, 9, 59.
| Standard electrode potentials involving radicals in aqueous solution: Inorganic radicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslenur8%3D&md5=0de72acfebfd376342f9b835ac45db40CAS |
[45] D. M. C. Dias, J. M. Copeland, C. L. Milliken, X. Shi, J. L. Ferry, T. J. Shaw, Production of reactive oxygen species in the rhizosphere of a Spartina-dominated salt marsh systems Aquat. Geochem. 2016, 22, 573.
| Production of reactive oxygen species in the rhizosphere of a Spartina-dominated salt marsh systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVGqsrvK&md5=f9bf514614b877aa62fc3517d01c0439CAS |
[46] K. Fujiwara, H. Kumata, N. Kando, E. Sakuma, M. Aihara, Y. Morita, T. Miyakawa, Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural waters Int. J. Environ. Anal. Chem. 2006, 86, 337.
| Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12ht7Y%3D&md5=fb20d4f1312a94b79906da7b248fe174CAS |
[47] T. Mokudai, K. Nakamura, T. Kanno, Y. Niwano, Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water PLoS One 2012, 7, e46392.
| Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFShsLvN&md5=62d3e8674b0fdd55373a3eb502654928CAS |
[48] G.-X. Tan, Y.-P. Chen, X.-P. Xu, Ozone decomposition in gas phase and aqueous solution Shanghai Daxue Xuebao, Ziran Kexueban 2005, 11, 510.
| 1:CAS:528:DC%2BD2MXht1Ciu7%2FI&md5=81fc0aca2109f589a4f6062e2bf5ae3bCAS |
[49] J. A. Zimbron, K. Reardon, Fenton’s oxidation of pentachlorophenol Water Res. 2009, 43, 1831.
| Fenton’s oxidation of pentachlorophenolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVCmtLY%3D&md5=28eb85415c517942c594a6ca877600d0CAS |
[50] Ch. Qi, X. Liu, W. Zhao, Ch. Lin, J. Ma, W. Shi, Q. Sun, H. Xiao, Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate Environ. Sci. Pollut. Res. Int. 2015, 22, 4670.
| Degradation and dechlorination of pentachlorophenol by microwave-activated persulfateCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGltbjL&md5=6dce53f8ebcc48d6cd31ffa5dcbc4a4fCAS |
[51] S. Chen, C.-Y. Hsu, P. M. Berthouex, Fate and modeling of pentachlorophenol degradation in a laboratory-scale anaerobic sludge digester J. Environ. Eng. 2006, 132, 795.
| Fate and modeling of pentachlorophenol degradation in a laboratory-scale anaerobic sludge digesterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVGkurk%3D&md5=f3dcd9c1b88983713f528689bde92625CAS |