Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Role of microbial reducing activity in antimony and arsenic release from an unpolluted wetland soil: a lab scale study using sodium azide as a microbial inhibiting agent

Asmaa Rouwane A B , Marion Rabiet A B , Isabelle Bourven A , Malgorzata Grybos A , Lucie Mallet A and Gilles Guibaud A
+ Author Affiliations
- Author Affiliations

A Groupement de Recherche Eau Sol Environnement (GRESE), University of Limoges, 123 Av. Albert Thomas, 87060 Limoges cedex, France.

B Corresponding authors. Email: asmaa.rouwane@etu.unilim.fr; marion.rabiet@unilim.fr

Environmental Chemistry 13(6) 945-954 https://doi.org/10.1071/EN16029
Submitted: 6 February 2016  Accepted: 15 June 2016   Published: 27 July 2016

Environmental context. Antimony and arsenic are toxic elements occurring naturally in the environment. We found that arsenic release to water from an unpolluted wetland soil is related to microbial reducing activity only, whereas antimony can still be released when this activity is inhibited, suggesting the involvement of additional processes. The findings show that microbial/non-microbial mechanisms control arsenic and antimony release and can thereby impact water quality at wetland outlets.

Abstract. In wetland soils, the mobility of geogenic metal(loid)s is usually associated with direct or indirect microbial-induced processes (solubilisation of mineral and organic components, pH induced desorption, competition effects, dissimilatory reduction). To identify the role of microbial reducing activity in As and Sb release, we conducted two series of soil incubations (sodium azide-treated (NaN3-T) and non-treated (NT)) in closed batches for 36 days. During the incubation period, we monitored the evolution of dissolved As, Sb, Mn, FeII, organic carbon (DOC), humic substances (HS) and proteins (PN) with their apparent molecular weight distribution (aMW) as well as pH, reduction potential (Eh) and alkalinity. Results showed that the release of As and Sb occurred when microbially reducing conditions prevailed (NT soil Eh ~0 mV and FeII > 40 mg L–1) and was inhibited for As in the absence of microbial reducing activity (NaN3-T soil; Eh > 250 mV and Fe < 1 mg L–1). In contrast, Sb behaved differently since its release was only slowed down when microbially reducing conditions were inhibited. We concluded that soil microbial reducing activity fully controls the release of As and to a lesser extent that of Sb when NaN3 is used as a microbial inhibiting agent. Since Sb release and dissolved organic matter (DOM) solubilisation (NaN3-induced artefact) occurred simultaneously in the absence of microbially reducing conditions, we concluded that organic matter could be one key factor controlling Sb mobilisation in the given conditions, which is not the case for As.

Additional keywords: As mobility, gleysol, microbial activity, Sb mobility, reducing conditions.


References

[1]  World Health Organization Environmental Health Criteria 18; Arsenic 1981 (World Health Organization: Geneva, Switzerland). Available at www.inchem.org/documents/ehc/ehc/ehc018.htm [verified 21 June 2016].

[2]  A. Léonard, G. B. Gerber, Mutagenicity, carcinogenicity and teratogenicity of antimony compounds. Mutat. Res. 1996, 366, 1.
Mutagenicity, carcinogenicity and teratogenicity of antimony compounds.Crossref | GoogleScholarGoogle Scholar | 8921983PubMed |

[3]  R. W. Boyle, I. R. Jonasson, The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J. Geochem. Explor. 1973, 2, 251.
The geochemistry of arsenic and its use as an indicator element in geochemical prospecting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXmt1SjsQ%3D%3D&md5=9b9885d7bc73052994dfb14257c71851CAS |

[4]  C. Reimann, J. Matschullat, M. Birke, R. Salminen, Antimony in the environment: Lessons from geochemical mapping. Appl. Geochem. 2010, 25, 175.
Antimony in the environment: Lessons from geochemical mapping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVegtb8%3D&md5=75f9e79cddbac9808d10d95d971fbcdeCAS |

[5]  P. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=1a0372fd67d357037569e79869e2bda1CAS |

[6]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural waters I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=f037ff9f903eff7a9929738ebdee35beCAS |

[7]  G. Olivie–Lauquet, G. Gruau, A. Dia, C. Riou, A. Jaffrezic, O. Henin, Release of trace elements in wetlands: role of seasonal variability. Water Res. 2001, 35, 943.
Release of trace elements in wetlands: role of seasonal variability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7nsVSisg%3D%3D&md5=c01265de20430367919ea2579c49bbadCAS | 11235890PubMed |

[8]  T. Frohne, J. Rinklebe, R. A. Diaz–Bone, G. Du Laing, Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 2011, 160, 414.
Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kquw%3D%3D&md5=0c9e6ef3207c767dbfc5a656561c181cCAS |

[9]  A. Rouwane, M. Rabiet, M. Grybos, G. Bernard, G. Guibaud, Effects of NO3– and PO43– on the release of geogenic arsenic and antimony in agricultural wetland soil: a field and laboratory approach. Environ. Sci. Pollut. Res. 2016, 23, 4714.
Effects of NO3 and PO43– on the release of geogenic arsenic and antimony in agricultural wetland soil: a field and laboratory approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslyhsLnN&md5=b335678727d5c008ea3273e4f6a3f137CAS |

[10]  J. Lintschinger, B. Michalke, S. Schulte–hostede, P. Schramel, Studies on speciation of antimony in soil contaminated by industrial activity. Int. J. Environ. Anal. Chem. 1998, 72, 11.
Studies on speciation of antimony in soil contaminated by industrial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFygs74%3D&md5=4687aae4007a97284e44a775b463711eCAS |

[11]  P. Bhattacharya, S. H. Frisbie, E. Smith, R. Naidu, G. Jacks, B. Sarkar, Arsenic in the environment: a global perspective, in Heavy Metals In The Environment (Ed. B. Sarkar) 2002, pp. 147–215 (Marcel Dekker: New York, NY).

[12]  B. Dousova, F. Buzek, L. Herzogova, V. Machovic, M. Lhotka, Effect of organic matter on arsenic(V) and antimony(V) adsorption in soils: Comparison of arsenic and antimony adsorption properties. Eur. J. Soil Sci. 2015, 66, 74.
Effect of organic matter on arsenic(V) and antimony(V) adsorption in soils: Comparison of arsenic and antimony adsorption properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlGrtL0%3D&md5=4f0d3ade2a5db5cc997006bb06a4d56aCAS |

[13]  F. N. Ponnamperuma, The chemistry of submerged soils. Adv. Agron. 1972, 24, 29.
The chemistry of submerged soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtVOju7c%3D&md5=b19a2d0e69b8fb6aa4162193a83d9511CAS |

[14]  K. R. Reddy, R. D. DeLaune, Biogeochemistry of Wetlands: Science and Applications 2008 (CRC Press: Boca Raton).

[15]  H. D. Pedersen, D. Postma, R. Jakobsen, Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta 2006, 70, 4116.
Release of arsenic associated with the reduction and transformation of iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVejsrk%3D&md5=613b18a3897b25e15ae1a86d8f7d3a55CAS |

[16]  T. Mansfeldt, M. Overesch, Arsenic mobility and speciation in a gleysol with petrogleyic properties: A field and laboratory approach. J. Environ. Qual. 2013, 42, 1130.
Arsenic mobility and speciation in a gleysol with petrogleyic properties: A field and laboratory approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOjsL%2FJ&md5=0cc9c2130bbeb7fec02e43c35d4be795CAS | 24216364PubMed |

[17]  X. Wan, S. Tandy, K. Hockmann, R. Schulin, Effects of waterlogging on the solubility and redox state of Sb in a shooting range soil and its uptake by grasses: a tank experiment. Plant Soil 2013, 371, 155.
Effects of waterlogging on the solubility and redox state of Sb in a shooting range soil and its uptake by grasses: a tank experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksVKqtr8%3D&md5=19f74c2b3221f6afefd849a23cfb4c95CAS |

[18]  K. Hockmann, M. Lenz, S. Tandy, M. Nachtegaal, M. Janousch, R. Schulin, Release of antimony from contaminated soil induced by redox changes. J. Hazard. Mater. 2014, 275, 215.
Release of antimony from contaminated soil induced by redox changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12lsbw%3D&md5=befd82ebf0b7437c0fb44c6ca3f2edcaCAS | 24862348PubMed |

[19]  S. Mitsunobu, T. Hrada, Y. Takahashi, Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ. Sci. Technol. 2006, 40, 7270.
Comparison of antimony behavior with that of arsenic under various soil redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7vI&md5=e036343c87933fd95348513a122be422CAS | 17180977PubMed |

[20]  A.-K. Leuz, H. Mönch, C. A. Johnson, Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ. Sci. Technol. 2006, 40, 7277.
Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOqsb8%3D&md5=e0dccabb754901c1a1181866739e0a0dCAS | 17180978PubMed |

[21]  P. Ravenscroft, Arsenic Pollution: a Global Synthesis 2009 (Wiley–Blackwell: Chichester, U.K.; Malden, MA).

[22]  G. A. Parks, Aqueous surface chemistry of oxides and complex oxide minerals, in Equilibrium Concepts in Natural Water Systems (Ed. W. Stumm) 1967, pp. 121–160 (American Chemical Society: Washington, DC).

[23]  S. Goldberg, Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 2002, 66, 413.
Competitive adsorption of arsenate and arsenite on oxides and clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCmsLc%3D&md5=ddf76e66c8d96fcffa261e60e9b3e6f1CAS |

[24]  M. Tighe, P. Lockwood, S. Wilson, Adsorption of antimony(v) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit. 2005, 7, 1177.
Adsorption of antimony(v) by floodplain soils, amorphous iron(III) hydroxide and humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers73K&md5=ad60aa9990d69088df537396ce1a5ccfCAS | 16307069PubMed |

[25]  M. Biver, M. Krachler, W. Shotyk, The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride. J. Environ. Qual. 2011, 40, 1143.
The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKitbs%3D&md5=1411e8b9c919913856b31396293c9fffCAS | 21712584PubMed |

[26]  S. Fiedler, K. Kalbitz, Concentrations and properties of dissolved organic matter in forest soils as affected by the redox regime. Soil Sci. 2003, 168, 793.
Concentrations and properties of dissolved organic matter in forest soils as affected by the redox regime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFylt7Y%3D&md5=b5d63724697ec35801bbba3d4797dccbCAS |

[27]  M. Grybos, M. Davranche, G. Gruau, P. Petitjean, Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interface Sci. 2007, 314, 490.
Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsV2qs78%3D&md5=9c3a58e66471d0ebb524859fae7115f3CAS | 17692327PubMed |

[28]  M. Grybos, M. Davranche, G. Gruau, P. Petitjean, M. Pédrot, Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 2009, 154, 13.
Increasing pH drives organic matter solubilization from wetland soils under reducing conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrs73J&md5=47879bf7dde797886813517d6ba31d09CAS |

[29]  J. Buschmann, L. Sigg, Antimony(III) binding to humic substances: influence of pH and type of humic acid. Environ. Sci. Technol. 2004, 38, 4535.
Antimony(III) binding to humic substances: influence of pH and type of humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslKrsL4%3D&md5=c756e93406be771a3321303dd301eb6fCAS | 15461160PubMed |

[30]  S. Steely, D. Amarasiriwardena, B. Xing, An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Environ. Pollut. 2007, 148, 590.
An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFOhsLw%3D&md5=f3fca952bcc0c5e1c1ad487731d048deCAS | 17258851PubMed |

[31]  C. Mikutta, R. Kretzschmar, Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environ. Sci. Technol. 2011, 45, 9550.
Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKjsrnN&md5=1b5b5f937b2e036f95674aa5c0bbb5a8CAS | 21985502PubMed |

[32]  M. Tella, G. S. Pokrovski, Stability and structure of pentavalent antimony complexes with aqueous organic ligands. Chem. Geol. 2012, 292–293, 57.
Stability and structure of pentavalent antimony complexes with aqueous organic ligands.Crossref | GoogleScholarGoogle Scholar |

[33]  J. Zobrist, P. R. Dowdle, J. A. Davis, R. S. Oremland, Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 2000, 34, 4747.
Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Kjsbw%3D&md5=396151e89aa6accba75ac471ba3a99d7CAS |

[34]  F. S. Islam, C. Boothman, A. G. Gault, D. A. Polya, J. R. Lloyd, Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineral. Mag. 2005, 69, 865.
Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFClt7w%3D&md5=412ed6d4142e7bfd6d4cbbb3b767e9e9CAS |

[35]  S. Ackermann, The Interaction of Iron Oxides and Sulfates with Antimony, Aqueous solution, and Bacteria: A Mineralogical and Geochemical Study 2008, Ph.D. thesis, Albert-Ludwigs-Universität, Germany.

[36]  T. R. Kulp, L. G. Miller, F. Braiotta, S. M. Webb, B. D. Kocar, J. S. Blum, R. S. Oremland, Microbiological reduction of Sb(V) in anoxic freshwater sediments. Environ. Sci. Technol. 2014, 48, 218.
Microbiological reduction of Sb(V) in anoxic freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCis7rN&md5=f6407f3da961baef5f60d78b721df277CAS | 24274659PubMed |

[37]  V. K. Nguyen, J.-U. Lee, Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory. Geomicrobiol. J. 2014, 31, 855.
Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOrtrvF&md5=2fe6ef6b8300dfb039642fed760fe526CAS |

[38]  C. A. Abin, J. T. Hollibaugh, Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism. Environ. Sci. Technol. 2014, 48, 681.
Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2mt7vE&md5=1927e0daccaedfc1f0932f706f6a3462CAS | 24319985PubMed |

[39]  K. Kudo, N. Yamaguchi, T. Makino, T. Ohtsuka, K. Kimura, D. T. Dong, S. Amachi, Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. Strain PSR-1. Appl. Environ. Microbiol. 2013, 79, 4635.
Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. Strain PSR-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOqs7vJ&md5=42849be05550eb0d8eec8d86fdf4f04dCAS | 23709511PubMed |

[40]  T. Ohtsuka, N. Yamaguchi, T. Makino, K. Sakurai, K. Kimura, K. Kudo, E. Homma, D. T. Dong, S. Amachi, Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environ. Sci. Technol. 2013, 47, 6263.
Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFSiurY%3D&md5=0ce4e36d24e7af1b88386b3c901dcd6fCAS | 23668621PubMed |

[41]  A. Dia, B. Lauga, M. Davranche, A. Fahy, R. Duran, B. Nowack, P. Petitjean, O. Henin, R. Marsac, G. Gruau, Bacteria-mediated reduction of As(V)-doped lepidocrocite in a flooded soil sample. Chem. Geol. 2015, 406, 34.
Bacteria-mediated reduction of As(V)-doped lepidocrocite in a flooded soil sample.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsFGmtbc%3D&md5=951496d1c84e7f2ef3949032733e3903CAS |

[42]  D. R. Lovley, D. E. Holmes, K. P. Nevin, Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 2004, 49, 219.
Dissimilatory Fe(III) and Mn(IV) reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaksrrE&md5=e577ed4942833e18a32dc516e96c779dCAS | 15518832PubMed |

[43]  L. Aguilar, L. J. Thibodeaux, Kinetics of peat soil dissolved organic carbon release from bed sediment to water. Part 1. Laboratory simulation. Chemosphere 2005, 58, 1309.
Kinetics of peat soil dissolved organic carbon release from bed sediment to water. Part 1. Laboratory simulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1Whtw%3D%3D&md5=eaa20df38cf8d5751dcf7e84fbee549aCAS | 15686748PubMed |

[44]  L. A. Sparrow, N. C. Uren, Manganese oxidation and reduction in soils: effects of temperature, water potential, pH and their interactions. Soil Res. 2014, 52, 483.
Manganese oxidation and reduction in soils: effects of temperature, water potential, pH and their interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVyitLvO&md5=73992d8666da1539da0e0d1a54c05731CAS |

[45]  H. L. Bohn, Redox potentials. Soil Sci. 1971, 112, 39.
| 1:CAS:528:DyaE3MXkslGgt7s%3D&md5=6a2892993411305714f386d245808abbCAS |

[46]  M. Rozycki, R. Bartha, Problems associated with the use of azide as an inhibitor of microbial activity in soil. Appl. Environ. Microbiol. 1981, 41, 833.
| 1:CAS:528:DyaL3MXhs12htbs%3D&md5=8f9d344f561c0f9a0421ec11030f2288CAS | 16345743PubMed |

[47]  O. Lowry, N. Rosebrough, A. Fan, R. Randall, Protein measurement with the folinphenol reagent. J. Biol. Chem. 1951, 193, 265.
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=6b4a855b4fdeeae6d4090c728136de41CAS | 14907713PubMed |

[48]  B. Fr¢lund, T. Griebe, P. H. Nielsen, Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 1995, 43, 755.
Enzymatic activity in the activated-sludge floc matrix.Crossref | GoogleScholarGoogle Scholar |

[49]  A. C. Avella, T. Görner, P. de Donato, The pitfalls of protein quantification in wastewater treatment studies. Sci. Total Environ. 2010, 408, 4906.
The pitfalls of protein quantification in wastewater treatment studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrt77I&md5=5d6a2ab7d5f8c4e7794eae62c7c67a40CAS | 20619882PubMed |

[50]  K. Połeć–Pawlak, R. Ruzik, K. Abramski, M. Ciurzyńska, H. Gawrońska, Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Anal. Chim. Acta 2005, 540, 61.
Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants.Crossref | GoogleScholarGoogle Scholar |

[51]  D. Bhatia, I. Bourven, S. Simon, F. Bordas, E. D. van Hullebusch, S. Rossano, P. N. L. Lens, G. Guibaud, Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresour. Technol. 2013, 131, 159.
Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOis7c%3D&md5=ad98b0c85a05721f65d416a1493fdb47CAS | 23347923PubMed |

[52]  H. C. Lichstein, Studies of the effect of sodium azide on microbic growth and respiration: II. The action of sodium azide on bacterial catalase. J. Bacteriol. 1944, 47, 231.
| 1:CAS:528:DyaH2cXitVOrsg%3D%3D&md5=a2dfc6848f3bdfefd0719f332c8adf41CAS | 16560768PubMed |

[53]  D. F. Wilson, B. Chance, Azide inhibition of mitochondrial electron transport. Biochim. Biophys. Acta 1967, 131, 421.
Azide inhibition of mitochondrial electron transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktVOqsro%3D&md5=2dbe0b892591466b44036ae87fe526deCAS | 4166781PubMed |

[54]  D. C. Wolf, T. H. Dao, H. D. Scott, T. L. Lavy, Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J. Environ. Qual. 1989, 18, 39.
Influence of sterilization methods on selected soil microbiological, physical, and chemical properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlChtLo%3D&md5=f79401408615618e9aa56c46b376e1a8CAS |

[55]  H. D. Skipper, D. T. Westermann, Comparative effects of propylene oxide, sodium azide, and autoclaving on selected soil properties. Soil Biol. Biochem. 1973, 5, 409.
Comparative effects of propylene oxide, sodium azide, and autoclaving on selected soil properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvFSqtr8%3D&md5=44a07114250027369f0695823f832203CAS |

[56]  H. Moya, E. Neves, M. Vazquezsuareziha, N. Coichev, Study of complex formation in the manganese(II)/azide system. Talanta 1996, 43, 67.
Study of complex formation in the manganese(II)/azide system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVeltr8%3D&md5=0a8ca4d50184215dc2c55d655260b4d8CAS | 18966464PubMed |

[57]  H. D. Moya, E. A. Neves, N. Coichev, On the interaction between azide and manganese ions at several oxidation states. Spectrosc. Lett. 2001, 34, 537.
On the interaction between azide and manganese ions at several oxidation states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGqsLk%3D&md5=8dc1d7087965ef57b484eb738b1b664bCAS |

[58]  N. Maie, R. Jaffé, T. Miyoshi, D. L. Childers, Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 2006, 78, 285.
Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKntro%3D&md5=7ce515f38080f3b09aa253893a34329aCAS |

[59]  G. Saini, G. Ostacoli, Some complexes of azide ion with metal ions in solution. J. Inorg. Nucl. Chem. 1958, 8, 346.
Some complexes of azide ion with metal ions in solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXjtlGhtQ%3D%3D&md5=2c3861a5af29384524ffee329e6e12c7CAS |

[60]  R. Bura, M. Cheung, B. Liao, J. Finlayson, B. Lee, I. Droppo, Composition of extracellular polymeric substances in the activated sludge floc matrix. Water Sci. Technol. 1998, 37, 325.
Composition of extracellular polymeric substances in the activated sludge floc matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVWmtr0%3D&md5=357989ef384941ac29ea77a43fdd6e8aCAS |

[61]  G. Renella, L. Landi, P. Nannipieri, Hydrolase activities during and after the chloroform fumigation of soil as affected by protease activity. Soil Biol. Biochem. 2002, 34, 51.
Hydrolase activities during and after the chloroform fumigation of soil as affected by protease activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVWh&md5=b8557ed4bfa87c0789f24773fc0f0715CAS |

[62]  J. M. Berg, J. L. Tymoczko, L. Stryer, N. D. Clarke, Biochemistry. Fifth edition. 2003 (W. H. Freeman: New York, NY).

[63]  M. Bauer, C. Blodau, Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006, 354, 179.
Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCntQ%3D%3D&md5=e43a9745d6e543250a25c2cfd9eb43f0CAS | 16398994PubMed |

[64]  M. Stachowicz, T. Hiemstra, W. H. van Riemsdijk, Arsenic–bicarbonate interaction on goethite particles. Environ. Sci. Technol. 2007, 41, 5620.
Arsenic–bicarbonate interaction on goethite particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsF2jsLk%3D&md5=4981dd9f3fd27ffe3768f1a7ad8bd677CAS | 17874764PubMed |

[65]  K. Hockmann, R. Schulin, Leaching of antimony from contaminated soils, in Competitive Sorption and Transport of Heavy Metals in Soils (Ed. H. M. Selim) 2013, pp. 119–145 (CRC Press: Boca Raton, FL).

[66]  W. W. Wenzel, N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi, D. C. Adriano, Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309.
Arsenic fractionation in soils using an improved sequential extraction procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGnt7c%3D&md5=643143be252b11889a36082a885eb01fCAS |

[67]  C. Demicheli, F. Frézard, M. Lecouvey, A. Garnier–Suillerot, Antimony(V) complex formation with adenine nucleosides in aqueous solution. Biochim. Biophys. Acta 2002, 1570, 192.
Antimony(V) complex formation with adenine nucleosides in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeitrY%3D&md5=90653c568dc5f78d3c908ca176f9a073CAS | 12020809PubMed |

[68]  R. Ge, H. Sun, Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc. Chem. Res. 2007, 40, 267.
Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVajtr0%3D&md5=3c3aebd9ee44f14f7512ff72ab0ca27aCAS | 17330963PubMed |

[69]  K. Hockmann, S. Tandy, M. Lenz, R. Schulin, Antimony leaching from contaminated soil under manganese- and iron-reducing conditions: column experiments. Environ. Chem. 2014, 11, 624.
Antimony leaching from contaminated soil under manganese- and iron-reducing conditions: column experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2ntrrF&md5=e7d4e9742aac18074156c2f15f5eb9beCAS |