Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Antimony in the soil–plant system – a review

Martin Tschan A C , Brett H. Robinson B and Rainer Schulin A
+ Author Affiliations
- Author Affiliations

A Eidgenössische Technische Hochschule (ETH) Zurich, Institute of Terrestrial Ecosystems ITES, Universitaetstrasse 16, CH-8092 Zurich, Switzerland.

B Agricultural and Life Sciences Division, Lincoln University, PO Box 84, Canterbury, New Zealand.

C Corresponding author. Email: martin.tschan@env.ethz.ch

Environmental Chemistry 6(2) 106-115 https://doi.org/10.1071/EN08111
Submitted: 24 December 2008  Accepted: 24 March 2009   Published: 27 April 2009

Environmental context. Soil contamination by antimony (Sb) has become an environmental problem of much concern in recent years, because increasing mining and industrial use has led to widespread soil contamination by this biologically unessential, but potentially carcinogenic element. We reviewed the available literature and found that Sb is generally taken up by terrestrial plants in proportion to the concentration of soluble Sb in soil over a concentration range covering five or more orders of magnitude, a finding that is relevant in particular for the assessment of environmental and health risks arising from Sb-contaminated soils. But very little is known about the mechanisms of Sb uptake by plants.

Abstract. Soil contamination by antimony (Sb) due to human activities has considerably increased in the recent past. We reviewed the available literature on Sb uptake by plants and toxicity risks arising from soil contamination by Sb and found that Sb is generally taken up by terrestrial plants in proportion to the concentration of soluble Sb in soil over a concentration range covering five or more orders of magnitude. However, very little is known about the mechanisms of Sb uptake by plants. Also the deposition of resuspended soil particles on the surfaces of aerial plant surfaces can result in high plant Sb concentration in the vicinity of Sb-contaminated sites. Although soil pollution by Sb may be rarely so severe as to cause toxicity problems to humans or animals consuming plants or food derived from plants grown on Sb-contaminated sites, such risks may arise under worst-case conditions.


References


[1]   Fowler B. A., Goering P. L., Antimony, in Metals and their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (Ed. M. Ernest) 1997, pp. 743–750 (VCH: Weinheim).

[2]   Kabata-Pendias A., Pendias H., Trace Elements in Soils and Plants 1984 (CRC Press: Boca Raton, FL).

[3]   C. A. Johnson , H. Moench , P. Wersin , P. Kugler , C. Wenger , Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 2005 , 34,  248.
        |  CAS | PubMed |  open url image1

[4]   J. Lintschinger , B. Michalke , S. Schulte-Hostede , P. Schramel , Studies on speciation of antimony in soil contaminated by industrial activity. Int. J. Environ. Anal. Chem. 1998 , 72,  11.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   M. Filella , N. Belzile , Y. W. Chen , Antimony in the environment: a review focused on natural waters I. Occurence. Earth Sci. Rev. 2002 , 57,  125.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[6]   Mathys R., Dittmar J., Johnson C. A., Antimony in Switzerland – a Substance Flow Analysis 2007 (Swiss Federal Office for the Environment: Berne).

[7]   F. Paoletti , P. Sirini , H. Seifert , J. Vehlow , Fate of Sb in municipal solid waste incineration. Chemosphere 2001 , 42,  533.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   M. J. Cal-Prieto , A. Carlosena , J. M. Andrade , M. L. Martínez , S. Muniategui , P. López-Mahía , D. Prada , Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. Water Air Soil Pollut. 2001 , 129,  333.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   S. Amereih , T. Meisel , R. Scholger , W. Wegscheider , Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS. J. Environ. Monit. 2005 , 7,  1200.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   F. Baroni , A. Boscagli , G. Protano , F. Riccobono , Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 2000 , 109,  347.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   W. Hammel , R. Debus , L. Steubing , Mobility of antimony in soil and its availability to plants. Chemosphere 2000 , 41,  1791.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   H. C. Flynn , A. A. Meharg , P. K. Bowyer , G. I. Paton , Antimony bioavailability in mine soils. Environ. Pollut. 2003 , 124,  93.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   C. P. Rooney , R. G. McLaren , R. J. Cresswell , Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Pollut. 1999 , 116,  535.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   A. Leonard , G. B. Gerber , Mutagenicity, carcinogenicity and teratogenicity of antimony compounds. Mutat. Res. Rev. Genet. Toxicol. 1996 , 366,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   N. Ainsworth , J. A. Cooke , M. S. Johnson , Distribution of antimony in contaminated grassland. 2. Small mammals and invertebrates. Environ. Pollut. 1990 , 65,  79.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   T. Gebel , Arsenic and antimony: comparative approach on mechanistic toxicology. Chem. Biol. Interact. 1997 , 107,  131.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   J. Mishra , A. Saxena , S. Singh , Chemotherapy of leishmaniasis: past, present and future. Curr. Med. Chem. 2007 , 14,  1153.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   W. Hammel , L. Steubing , R. Debus , Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test. Ecotoxicol. Environ. Saf. 1998 , 40,  173.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   K. Oorts , E. Smolders , F. Degryse , J. Buekers , G. Gasco , G. Cornelis , J. Mertens , Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environ. Sci. Technol. 2008 , 42,  4378.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   M. C. He , J. R. Yang , Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci. Total Environ. 1999 , 243–244,  149.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   R. D. Davis , P. H. T. Beckett , E. Wollan , Critical levels of 20 potentially toxic elements in young spring barley. Plant Soil 1978 , 49,  395.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   J. Pratas , M. N. V. Prasad , H. Freitas , L. Conde , Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J. Geochem. Explor. 2005 , 85,  99.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   M. T. Dominguez , T. Maranon , J. M. Murillo , R. Schulin , B. H. Robinson , Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ. Pollut. 2008 , 152,  50.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   C. Leduc , C. Gardou , Biochemical prospecting for antimony – results of an orientation study on the Brouzils deposit (Vendée, France). Bulletin de la société botanique de France – Actualités botaniques 1992 , 139,  123.
         open url image1

[25]   E. Lehndorff , L. Schwark , Accumulation histories of major and trace elements on pine needles in the Cologne conurbation as function of air quality. Atmos. Environ. 2008 , 42,  833.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   M. Krachler , M. Burow , H. Emons , Development and evaluation of an analytical procedure for the determination of antimony in plant materials by hydride generation atomic absorption spectrometry. Analyst 1999 , 124,  777.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   P. Pohl , A. Lesniewicz , W. Zyrnicki , Determination of As, Bi, Sb and Sn in conifer needles from various locations in Poland and Norway by hydride generation inductively coupled plasma atomic emission spectrometry. Int. J. Environ. Anal. Chem. 2003 , 83,  963.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   M. Tschan , B. H. Robinson , M. Nodari , R. Schulin , Antimony uptake by different plant species from nutrient solution, agar and soil. Environ. Chem. 2008 , 6,  144.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   M. Filella , N. Belzile , M. C. Lett , Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth Sci. Rev. 2007 , 80,  195.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   A. Porquet , M. Filella , Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem. Res. Toxicol. 2007 , 20,  1269.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   J. Cai , K. Salmon , M. S. DuBow , A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 1998 , 144,  2705.
        |  CAS | PubMed |  open url image1

[32]   C. J. Asher , P. F. Reay , Arsenic uptake by barley seedlings. Aust. J. Plant Physiol. 1979 , 6,  459.
        |  CAS |  open url image1

[33]   M. Tschan , B. Robinson , R. Schulin , Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ. Geochem. Health 2008 , 30,  187.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   R. Wysocki , S. Clemens , D. Augustyniak , P. Golik , E. Maciaszczyk , M. J. Tamas , D. Dziadkowiec , Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem. Biophys. Res. Commun. 2003 , 304,  293.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   Waisel Y., Eshel A., Kafkafi U. (Eds), Plant Roots – the Hidden Half, 2nd edn 1996 (Marcel Dekker, Inc.: New York).

[36]   C. X. Huang , R. F. M. Van Steveninck , The role of particular pericycle cells in the apoplastic transport in root meristems of barley. J. Plant Physiol. 1989 , 135,  554.
         open url image1

[37]   Wenger K., Tandy S., Nowack B., Effect of chelating agents on trace metal speciation and bioavailability, in Biogeochemistry of Chelating Agents (Eds J. Vanbriesen, B. Nowack) 2005, pp. 204–224 (American Chemical Society).

[38]   S. Tandy , R. Schulin , B. Nowack , The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 2006 , 62,  1454.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[39]   M. C. Jung , I. Thornton , H. T. Chon , Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Sci. Total Environ. 2002 , 295,  81.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   G. S. Ghuman , B. G. Motes , S. J. Fernandez , K. W. Guardipee , G. W. McManus , C. M. Wilcox , F. J. Weesner , Distribution of antimony-125, cesium-137, and iodine-129 in the soil–plant system around a nuclear-fuel reprocessing plant. J. Environ. Radioact. 1993 , 21,  161.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   O. Rached-Mosbah , C. Gardou , J. M. Pauwels , Accumulator plants in a steppe upon an antimonious contaminated soil. Bulletin de la société botanique de France – Actualités botaniques 1992 , 139,  133.
         open url image1

[42]   M. Baghour , D. A. Moreno , J. Hernandez , N. Castilla , L. Romero , Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta). J. Environ. Sci. Heal. A 2001 , 36,  1389.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   J. Borovicka , Z. Randa , E. Jelinek , Antimony content of macrofungi from clean and polluted areas. Chemosphere 2006 , 64,  1837.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[44]   T. G. Hinton , P. Kopp , S. Ibrahim , I. Bubryak , A. Syomov , L. Tobler , C. Bell , A comparison of techniques used to estimate the amount of resuspended soil on plant surfaces. Health Phys. 1995 , 68,  523.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[45]   T. Berg , E. Steinnes , Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute deposition values. Environ. Pollut. 1997 , 98,  61.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[46]   J. M. Cloy , J. G. Farmer , M. C. Graham , A. B. MacKenzie , G. T. Cook , A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland. J. Environ. Monit. 2005 , 7,  1137.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[47]   W. Shotyk , M. Krachler , B. Chen , Antimony in recent, ombrotrophic peat from Switzerland and Scotland: comparison with natural background values (5320 to 8020 14C yr BP) and implications for the global atmospheric Sb cycle. Global Biogeochem. Cy. 2004 , 18,  GB1016.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   N. Ainsworth , J. A. Cooke , M. S. Johnson , Distribution of antimony in contaminated grassland.1. Vegetation and soils. Environ. Pollut. 1990 , 65,  65.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[49]   B. H. Robinson , S. Bischofberger , A. Stoll , D. Schroer , G. Furrer , S. Roulier , A. Gruenwald , W. Attinger , R. Schulin , Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environ. Pollut. 2008 , 153,  668.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[50]   B. H. Robinson , M. Greven , S. Green , S. Sivakumaran , P. Davidson , B. Clothier , Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand. Sci. Total Environ. 2006 , 364,  113.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[51]   E. I. Hozhina , A. A. Khramov , P. A. Gerasimov , A. A. Kumarkov , Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explor. 2001 , 74,  153.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[52]   Y. Kawamoto , S. Morisawa , The distribution and speciation of antimony in river water, sediment and biota in Yodo River, Japan. Environ. Technol. 2003 , 24,  1349.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[53]   X. D. Li , I. Thornton , Arsenic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England. Environ. Geochem. Health 1993 , 15,  135.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[54]   T. Gebel , K. Claussen , H. Dunkelberg , Human biomonitoring of antimony. Int. Arch. Occup. Environ. Health 1998 , 71,  221.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[55]   Bowen H. J. M., Environmental Chemistry of the Elements 1979 (Academic Press: London).

[56]   A. Murciego Murciego , A. García Sánchez , M. A. Rodríguez González , E. Pinilla Gil , C. Toro Gordillo , J. Cabezas Fernández , T. Buyolo Triguero , Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ. Pollut. 2007 , 145,  15.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[57]   Butterman W. C., Carlin J. F. J., Antimony, Mineral Commodity Profiles, Open file Report 03–019 2004 (US Department of the Interior: Washington, DC).

[58]   U. Gemici , G. Tarcan , Assessment of the pollutants in farming soils and waters around untreated abandoned Turkonu mercury mine (Turkey). Bull. Environ. Contam. Toxicol. 2007 , 79,  20.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[59]   A. V. Hirner , U. M. Gruter , J. Kresimon , Metal(loid)organic compounds in contaminated soil. Fresenius J. Anal. Chem. 2000 , 368,  263.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[60]   S. E. Wagner , F. J. Peryea , R. A. Filby , Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils. J. Environ. Qual. 2003 , 32,  736.
        |  CAS | PubMed |  open url image1

[61]   R. G. Kuperman , R. T. Checkai , M. Simini , C. I. Phillips , J. A. Speicher , D. J. Barclift , Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsomia candida, Eisenia fetida, and Enchytraeus crypticus. Environ. Toxicol. Chem. 2006 , 25,  754.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[62]   R. C. Palenik , K. A. Abboud , G. J. Palenik , Bond valence sums and structural studies of antimony complexes containing Sb bonded only to O ligands. Inorg. Chim. Acta 2005 , 358,  1034.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[63]   G. Z. Liu , S. T. Zheng , G. Y. Yang , B3O4(OH)·0.5(C4H10N2): first organic–inorganic hybrid borate with a neutral layered framework. Inorg. Chem. Commun. 2007 , 10,  84.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[64]   U. Hoppe , G. Walter , A. Barz , D. Stachel , A. C. Hannon , The P–O bond lengths in vitreous P2O5 probed by neutron diffraction with high real-space resolution. J. Phys. Condens. Matter 1998 , 10,  261.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[65]   W. Hilmer , K. Dornberger-Schiff , Die Kristallstruktur von Lithiumpolyarsenat (LiAsO3)X. Acta Crystallogr. 1956 , 9,  87.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[66]   U. Kolitsch , E. Tillmanns , Li3Sc(MoO4)3: substitutional disorder on three (Li,Sc) sites. Acta Crystallogr. Sect. E Struct. Rep. Online 2003 , 59,  i55.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[67]   C. Stålhandske , Structure of cadmium selenate monohydrate. Acta Crystallogr. B 1981 , 37,  2055.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[68]   H. Montgomery , Tuttons salts. 9. Nickel ammonium chromate hexahydrate. Acta Crystallogr. B 1979 , 35,  155.
        | Crossref |  open url image1

[69]   R. Zahrobsky , W. H. Baur , Crystal structure of copper(II) sulfate trihydrate. Naturwissenschaften 1965 , 52,  389.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[70]   M. Tighe , P. Ashley , P. Lockwood , S. Wilson , Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Sci. Total Environ. 2005 , 347,  175.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[71]   I. De Gregori , H. Pinochet , E. Fuentes , M. Potin-Gautier , Determination of antimony in soils and vegetables by hydride generation atomic fluorescence spectrometry and electrothermal atomic absorption spectrometry. Optimization and comparison of both analytical techniques. J. Anal. At. Spectrom. 2001 , 16,  172.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[72]   Affolter R., Enggist A., Schadstoffbelastung des Bodens und der Vegetation im Bereich von Schiessanlagen, Folgeuntersuchungen an drei Schiessanlagen im Kanton Solothurn 1995 (Volkswirtschaftsdepartement des Kantons Solothurn: Solothurn, Switzerland).

[73]   I. De Gregori , E. Fuentes , D. Olivares , H. Pinochet , Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.). J. Environ. Monit. 2004 , 6,  38.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[74]   I. De Gregori , E. Fuentes , M. Rojas , H. Pinochet , M. Potin-Gautier , Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J. Environ. Monit. 2003 , 5,  287.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1