Antimony in the soil–plant system – a review
Martin Tschan A C , Brett H. Robinson B and Rainer Schulin AA Eidgenössische Technische Hochschule (ETH) Zurich, Institute of Terrestrial Ecosystems ITES, Universitaetstrasse 16, CH-8092 Zurich, Switzerland.
B Agricultural and Life Sciences Division, Lincoln University, PO Box 84, Canterbury, New Zealand.
C Corresponding author. Email: martin.tschan@env.ethz.ch
Environmental Chemistry 6(2) 106-115 https://doi.org/10.1071/EN08111
Submitted: 24 December 2008 Accepted: 24 March 2009 Published: 27 April 2009
Environmental context. Soil contamination by antimony (Sb) has become an environmental problem of much concern in recent years, because increasing mining and industrial use has led to widespread soil contamination by this biologically unessential, but potentially carcinogenic element. We reviewed the available literature and found that Sb is generally taken up by terrestrial plants in proportion to the concentration of soluble Sb in soil over a concentration range covering five or more orders of magnitude, a finding that is relevant in particular for the assessment of environmental and health risks arising from Sb-contaminated soils. But very little is known about the mechanisms of Sb uptake by plants.
Abstract. Soil contamination by antimony (Sb) due to human activities has considerably increased in the recent past. We reviewed the available literature on Sb uptake by plants and toxicity risks arising from soil contamination by Sb and found that Sb is generally taken up by terrestrial plants in proportion to the concentration of soluble Sb in soil over a concentration range covering five or more orders of magnitude. However, very little is known about the mechanisms of Sb uptake by plants. Also the deposition of resuspended soil particles on the surfaces of aerial plant surfaces can result in high plant Sb concentration in the vicinity of Sb-contaminated sites. Although soil pollution by Sb may be rarely so severe as to cause toxicity problems to humans or animals consuming plants or food derived from plants grown on Sb-contaminated sites, such risks may arise under worst-case conditions.
[1]
[2]
[3]
C. A. Johnson ,
H. Moench ,
P. Wersin ,
P. Kugler ,
C. Wenger ,
Solubility of antimony and other elements in samples taken from shooting ranges.
J. Environ. Qual. 2005
, 34, 248.
|
CAS |
PubMed |
[4]
J. Lintschinger ,
B. Michalke ,
S. Schulte-Hostede ,
P. Schramel ,
Studies on speciation of antimony in soil contaminated by industrial activity.
Int. J. Environ. Anal. Chem. 1998
, 72, 11.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
M. Filella ,
N. Belzile ,
Y. W. Chen ,
Antimony in the environment: a review focused on natural waters I. Occurence.
Earth Sci. Rev. 2002
, 57, 125.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
[7]
F. Paoletti ,
P. Sirini ,
H. Seifert ,
J. Vehlow ,
Fate of Sb in municipal solid waste incineration.
Chemosphere 2001
, 42, 533.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
M. J. Cal-Prieto ,
A. Carlosena ,
J. M. Andrade ,
M. L. Martínez ,
S. Muniategui ,
P. López-Mahía ,
D. Prada ,
Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments.
Water Air Soil Pollut. 2001
, 129, 333.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
S. Amereih ,
T. Meisel ,
R. Scholger ,
W. Wegscheider ,
Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS.
J. Environ. Monit. 2005
, 7, 1200.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[10]
F. Baroni ,
A. Boscagli ,
G. Protano ,
F. Riccobono ,
Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area.
Environ. Pollut. 2000
, 109, 347.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
W. Hammel ,
R. Debus ,
L. Steubing ,
Mobility of antimony in soil and its availability to plants.
Chemosphere 2000
, 41, 1791.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
H. C. Flynn ,
A. A. Meharg ,
P. K. Bowyer ,
G. I. Paton ,
Antimony bioavailability in mine soils.
Environ. Pollut. 2003
, 124, 93.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
C. P. Rooney ,
R. G. McLaren ,
R. J. Cresswell ,
Distribution and phytoavailability of lead in a soil contaminated with lead shot.
Water Air Soil Pollut. 1999
, 116, 535.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
A. Leonard ,
G. B. Gerber ,
Mutagenicity, carcinogenicity and teratogenicity of antimony compounds.
Mutat. Res. Rev. Genet. Toxicol. 1996
, 366, 1.
| Crossref | GoogleScholarGoogle Scholar |
[15]
N. Ainsworth ,
J. A. Cooke ,
M. S. Johnson ,
Distribution of antimony in contaminated grassland. 2. Small mammals and invertebrates.
Environ. Pollut. 1990
, 65, 79.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
T. Gebel ,
Arsenic and antimony: comparative approach on mechanistic toxicology.
Chem. Biol. Interact. 1997
, 107, 131.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
J. Mishra ,
A. Saxena ,
S. Singh ,
Chemotherapy of leishmaniasis: past, present and future.
Curr. Med. Chem. 2007
, 14, 1153.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
W. Hammel ,
L. Steubing ,
R. Debus ,
Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test.
Ecotoxicol. Environ. Saf. 1998
, 40, 173.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
K. Oorts ,
E. Smolders ,
F. Degryse ,
J. Buekers ,
G. Gasco ,
G. Cornelis ,
J. Mertens ,
Solubility and toxicity of antimony trioxide (Sb2O3) in soil.
Environ. Sci. Technol. 2008
, 42, 4378.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
M. C. He ,
J. R. Yang ,
Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue.
Sci. Total Environ. 1999
, 243–244, 149.
| Crossref | GoogleScholarGoogle Scholar |
[21]
R. D. Davis ,
P. H. T. Beckett ,
E. Wollan ,
Critical levels of 20 potentially toxic elements in young spring barley.
Plant Soil 1978
, 49, 395.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
J. Pratas ,
M. N. V. Prasad ,
H. Freitas ,
L. Conde ,
Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation.
J. Geochem. Explor. 2005
, 85, 99.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
M. T. Dominguez ,
T. Maranon ,
J. M. Murillo ,
R. Schulin ,
B. H. Robinson ,
Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study.
Environ. Pollut. 2008
, 152, 50.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
C. Leduc ,
C. Gardou ,
Biochemical prospecting for antimony – results of an orientation study on the Brouzils deposit (Vendée, France).
Bulletin de la société botanique de France – Actualités botaniques 1992
, 139, 123.
[25]
E. Lehndorff ,
L. Schwark ,
Accumulation histories of major and trace elements on pine needles in the Cologne conurbation as function of air quality.
Atmos. Environ. 2008
, 42, 833.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
M. Krachler ,
M. Burow ,
H. Emons ,
Development and evaluation of an analytical procedure for the determination of antimony in plant materials by hydride generation atomic absorption spectrometry.
Analyst 1999
, 124, 777.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
P. Pohl ,
A. Lesniewicz ,
W. Zyrnicki ,
Determination of As, Bi, Sb and Sn in conifer needles from various locations in Poland and Norway by hydride generation inductively coupled plasma atomic emission spectrometry.
Int. J. Environ. Anal. Chem. 2003
, 83, 963.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
M. Tschan ,
B. H. Robinson ,
M. Nodari ,
R. Schulin ,
Antimony uptake by different plant species from nutrient solution, agar and soil.
Environ. Chem. 2008
, 6, 144.
| Crossref | GoogleScholarGoogle Scholar |
[29]
M. Filella ,
N. Belzile ,
M. C. Lett ,
Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions.
Earth Sci. Rev. 2007
, 80, 195.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
A. Porquet ,
M. Filella ,
Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake.
Chem. Res. Toxicol. 2007
, 20, 1269.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[31]
J. Cai ,
K. Salmon ,
M. S. DuBow ,
A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli.
Microbiology 1998
, 144, 2705.
|
CAS |
PubMed |
[32]
C. J. Asher ,
P. F. Reay ,
Arsenic uptake by barley seedlings.
Aust. J. Plant Physiol. 1979
, 6, 459.
|
CAS |
[33]
M. Tschan ,
B. Robinson ,
R. Schulin ,
Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution.
Environ. Geochem. Health 2008
, 30, 187.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
R. Wysocki ,
S. Clemens ,
D. Augustyniak ,
P. Golik ,
E. Maciaszczyk ,
M. J. Tamas ,
D. Dziadkowiec ,
Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p.
Biochem. Biophys. Res. Commun. 2003
, 304, 293.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
[36]
C. X. Huang ,
R. F. M. Van Steveninck ,
The role of particular pericycle cells in the apoplastic transport in root meristems of barley.
J. Plant Physiol. 1989
, 135, 554.
[37]
[38]
S. Tandy ,
R. Schulin ,
B. Nowack ,
The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
Chemosphere 2006
, 62, 1454.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[39]
M. C. Jung ,
I. Thornton ,
H. T. Chon ,
Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea.
Sci. Total Environ. 2002
, 295, 81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[40]
G. S. Ghuman ,
B. G. Motes ,
S. J. Fernandez ,
K. W. Guardipee ,
G. W. McManus ,
C. M. Wilcox ,
F. J. Weesner ,
Distribution of antimony-125, cesium-137, and iodine-129 in the soil–plant system around a nuclear-fuel reprocessing plant.
J. Environ. Radioact. 1993
, 21, 161.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
O. Rached-Mosbah ,
C. Gardou ,
J. M. Pauwels ,
Accumulator plants in a steppe upon an antimonious contaminated soil.
Bulletin de la société botanique de France – Actualités botaniques 1992
, 139, 133.
[42]
M. Baghour ,
D. A. Moreno ,
J. Hernandez ,
N. Castilla ,
L. Romero ,
Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta).
J. Environ. Sci. Heal. A 2001
, 36, 1389.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
J. Borovicka ,
Z. Randa ,
E. Jelinek ,
Antimony content of macrofungi from clean and polluted areas.
Chemosphere 2006
, 64, 1837.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[44]
T. G. Hinton ,
P. Kopp ,
S. Ibrahim ,
I. Bubryak ,
A. Syomov ,
L. Tobler ,
C. Bell ,
A comparison of techniques used to estimate the amount of resuspended soil on plant surfaces.
Health Phys. 1995
, 68, 523.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[45]
T. Berg ,
E. Steinnes ,
Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute deposition values.
Environ. Pollut. 1997
, 98, 61.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[46]
J. M. Cloy ,
J. G. Farmer ,
M. C. Graham ,
A. B. MacKenzie ,
G. T. Cook ,
A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland.
J. Environ. Monit. 2005
, 7, 1137.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[47]
W. Shotyk ,
M. Krachler ,
B. Chen ,
Antimony in recent, ombrotrophic peat from Switzerland and Scotland: comparison with natural background values (5320 to 8020 14C yr BP) and implications for the global atmospheric Sb cycle.
Global Biogeochem. Cy. 2004
, 18, GB1016.
| Crossref | GoogleScholarGoogle Scholar |
[48]
N. Ainsworth ,
J. A. Cooke ,
M. S. Johnson ,
Distribution of antimony in contaminated grassland.1. Vegetation and soils.
Environ. Pollut. 1990
, 65, 65.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[49]
B. H. Robinson ,
S. Bischofberger ,
A. Stoll ,
D. Schroer ,
G. Furrer ,
S. Roulier ,
A. Gruenwald ,
W. Attinger ,
R. Schulin ,
Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications.
Environ. Pollut. 2008
, 153, 668.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[50]
B. H. Robinson ,
M. Greven ,
S. Green ,
S. Sivakumaran ,
P. Davidson ,
B. Clothier ,
Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand.
Sci. Total Environ. 2006
, 364, 113.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[51]
E. I. Hozhina ,
A. A. Khramov ,
P. A. Gerasimov ,
A. A. Kumarkov ,
Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries.
J. Geochem. Explor. 2001
, 74, 153.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[52]
Y. Kawamoto ,
S. Morisawa ,
The distribution and speciation of antimony in river water, sediment and biota in Yodo River, Japan.
Environ. Technol. 2003
, 24, 1349.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[53]
X. D. Li ,
I. Thornton ,
Arsenic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England.
Environ. Geochem. Health 1993
, 15, 135.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[54]
T. Gebel ,
K. Claussen ,
H. Dunkelberg ,
Human biomonitoring of antimony.
Int. Arch. Occup. Environ. Health 1998
, 71, 221.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[55]
[56]
A. Murciego Murciego ,
A. García Sánchez ,
M. A. Rodríguez González ,
E. Pinilla Gil ,
C. Toro Gordillo ,
J. Cabezas Fernández ,
T. Buyolo Triguero ,
Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain).
Environ. Pollut. 2007
, 145, 15.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[57]
[58]
U. Gemici ,
G. Tarcan ,
Assessment of the pollutants in farming soils and waters around untreated abandoned Turkonu mercury mine (Turkey).
Bull. Environ. Contam. Toxicol. 2007
, 79, 20.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[59]
A. V. Hirner ,
U. M. Gruter ,
J. Kresimon ,
Metal(loid)organic compounds in contaminated soil.
Fresenius J. Anal. Chem. 2000
, 368, 263.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[60]
S. E. Wagner ,
F. J. Peryea ,
R. A. Filby ,
Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils.
J. Environ. Qual. 2003
, 32, 736.
|
CAS |
PubMed |
[61]
R. G. Kuperman ,
R. T. Checkai ,
M. Simini ,
C. I. Phillips ,
J. A. Speicher ,
D. J. Barclift ,
Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsomia candida, Eisenia fetida, and Enchytraeus crypticus.
Environ. Toxicol. Chem. 2006
, 25, 754.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[62]
R. C. Palenik ,
K. A. Abboud ,
G. J. Palenik ,
Bond valence sums and structural studies of antimony complexes containing Sb bonded only to O ligands.
Inorg. Chim. Acta 2005
, 358, 1034.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[63]
G. Z. Liu ,
S. T. Zheng ,
G. Y. Yang ,
B3O4(OH)·0.5(C4H10N2): first organic–inorganic hybrid borate with a neutral layered framework.
Inorg. Chem. Commun. 2007
, 10, 84.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[64]
U. Hoppe ,
G. Walter ,
A. Barz ,
D. Stachel ,
A. C. Hannon ,
The P–O bond lengths in vitreous P2O5 probed by neutron diffraction with high real-space resolution.
J. Phys. Condens. Matter 1998
, 10, 261.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[65]
W. Hilmer ,
K. Dornberger-Schiff ,
Die Kristallstruktur von Lithiumpolyarsenat (LiAsO3)X.
Acta Crystallogr. 1956
, 9, 87.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[66]
U. Kolitsch ,
E. Tillmanns ,
Li3Sc(MoO4)3: substitutional disorder on three (Li,Sc) sites.
Acta Crystallogr. Sect. E Struct. Rep. Online 2003
, 59, i55.
| Crossref | GoogleScholarGoogle Scholar |
[67]
C. Stålhandske ,
Structure of cadmium selenate monohydrate.
Acta Crystallogr. B 1981
, 37, 2055.
| Crossref | GoogleScholarGoogle Scholar |
[68]
H. Montgomery ,
Tuttons salts. 9. Nickel ammonium chromate hexahydrate.
Acta Crystallogr. B 1979
, 35, 155.
| Crossref |
[69]
R. Zahrobsky ,
W. H. Baur ,
Crystal structure of copper(II) sulfate trihydrate.
Naturwissenschaften 1965
, 52, 389.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[70]
M. Tighe ,
P. Ashley ,
P. Lockwood ,
S. Wilson ,
Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system.
Sci. Total Environ. 2005
, 347, 175.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[71]
I. De Gregori ,
H. Pinochet ,
E. Fuentes ,
M. Potin-Gautier ,
Determination of antimony in soils and vegetables by hydride generation atomic fluorescence spectrometry and electrothermal atomic absorption spectrometry. Optimization and comparison of both analytical techniques.
J. Anal. At. Spectrom. 2001
, 16, 172.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[72]
[73]
I. De Gregori ,
E. Fuentes ,
D. Olivares ,
H. Pinochet ,
Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.).
J. Environ. Monit. 2004
, 6, 38.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[74]
I. De Gregori ,
E. Fuentes ,
M. Rojas ,
H. Pinochet ,
M. Potin-Gautier ,
Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.
J. Environ. Monit. 2003
, 5, 287.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |