Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species

Montserrat Filella https://orcid.org/0000-0002-5943-1273 A C and Peter M. May B
+ Author Affiliations
- Author Affiliations

A Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.

B Chemistry, School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150, Australia.

C Corresponding author. Email: montserrat.filella@unige.ch

Environmental Chemistry 16(4) 289-295 https://doi.org/10.1071/EN19017
Submitted: 17 January 2019  Accepted: 13 March 2019   Published: 29 April 2019

Environmental context. Equilibrium constants are required in many scientific disciplines such as biology, medicine, engineering, and in particular chemistry. Lack of reliable equilibrium constants for tellurium has restricted our understanding of its speciation and behaviour in the environment. This study presents a reliable set of equilibrium constants for tellurium, thereby providing a more coherent basis for future experimental investigations of the geochemistry, biochemistry and toxicology of this element.

Abstract. Relatively little information is available in the literature regarding the speciation and solubility of tellurium in aqueous solutions. The available thermodynamic data have been critically evaluated and entered into a thermodynamic database. The Joint Expert Speciation System suite of computer programs has been used to achieve thermodynamic consistency and provide a critically-selected set of equilibrium constants that can later be used for modelling purposes.

Additional keywords: tellurium speciation, thermodynamic constants.


References

Afifi AA, Kelly WC, Essene EJ (1988). Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibria. Economic Geology and the Bulletin of the Society of Economic Geologists 83, 377–394.
Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibriaCrossref | GoogleScholarGoogle Scholar |

Andersson E, Lindqvist O, Yamaguchi T (1981). An X-ray diffraction study on the structure of telluric acid Te(OH)6 in aqueous solution. Acta Chemica Scandinavica. Series A: Physical and Inorganic Chemistry 35, 591–597.
An X-ray diffraction study on the structure of telluric acid Te(OH)6 in aqueous solutionCrossref | GoogleScholarGoogle Scholar |

Antikainen PJ (1957a). Notes on the formation of polyacides in concentrated telluric acid solutions. Suomen Kemistilehti B30, 22–23.

Antikainen PJ (1957b). The thermodynamics of the ionization of telluric acid in aqueous solutions. Suomen Kemistilehti B30, 201–203.

Antikainen PJ, Tevanen K (1960). The effect of polyelectrolytes on the formation of polyacids. Telluric acid in aqueous sodium perchlorate solutions. Suomen Kemistilehti B33, 59–60.

Awad SA (1962). Poisoning effect of telluride ions on hydrogen evolution and cathodic formation of hydrogen telluride. Journal of Physical Chemistry 66, 890–894.
Poisoning effect of telluride ions on hydrogen evolution and cathodic formation of hydrogen tellurideCrossref | GoogleScholarGoogle Scholar |

Baes CF, Mesmer RE (1976). ‘The hydrolysis of cations.’ (Wiley: New York, NY)

Bakunina II, Murashova VI (1970). A spectrophotometric study of the interaction of tellurium(IV) with Br ions in strongly acid solutions. Zhurnal Analiticheskoi Khimii 25, 142–146. [in Russian]

Barin I, Platski G (1995). ‘Thermochemical data on pure substances, 3rd edn.’ (Wiley VCH: New York, NY)

Biryukov VP, Ganelina ES (1971). Acid dissociation constants of orthotelluric acid. Russian Journal of Inorganic Chemistry 16, 320–323.

Biver M, Filella M (2016). Bulk dissolution rates of cadmium and bismuth tellurides as a function of pH, temperature and dissolved oxygen. Environmental Science & Technology 50, 4675–4681.
Bulk dissolution rates of cadmium and bismuth tellurides as a function of pH, temperature and dissolved oxygenCrossref | GoogleScholarGoogle Scholar |

Biver M, Quentel F, Filella M (2015). Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by catalytic cathodic stripping voltammetry. Talanta 144, 1007–1013.
Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by catalytic cathodic stripping voltammetryCrossref | GoogleScholarGoogle Scholar | 26452920PubMed |

Blanc E (1920). Détermination de la constante de dissociation de quelques acides minéraux [Determination of the dissociation constants of some mineral acids]. Journal de Chimie Physique 18, 28–45.
Détermination de la constante de dissociation de quelques acides minéraux [Determination of the dissociation constants of some mineral acids]Crossref | GoogleScholarGoogle Scholar | [in French]

Bouroushian M (2010). Electrochemistry of the chalcogens. In ‘Electrochemistry of metal chalcogenides’. (Ed. M Bouroushian) pp. 57–75. (Springer Verlag: Heidelberg)

Brito F (1966). Estudios sobre equilibrios de polianiones XIII. Polimerización de los teluratos en NaCl 1 M y 25 °C. Anales de Física y Química 62, 197–108. [in Spanish]

Bruner-Krakau L (1913). Über Selen- und Tellurwasserstoff als Säuren [About selenium and tellurium as acids]. Zeitschrift für Elektrochemie 19, 861 [in German]

Chen YW, Alzahrani A, Deng TL, Belzile N (2016). Valence properties of tellurium in different chemical systems and its determination in refractory environmental samples using hydride generation-Atomic fluorescence spectroscopy. Analytica Chimica Acta 905, 42–50.
Valence properties of tellurium in different chemical systems and its determination in refractory environmental samples using hydride generation-Atomic fluorescence spectroscopyCrossref | GoogleScholarGoogle Scholar | 26755135PubMed |

Cooper WC (1971). Analytical chemistry of tellurium. In ‘Tellurium’ (Ed. WC Cooper) pp. 281–312. (Van Nostrand Company: New York, NY)

D’Ulivo A (1997). Determination of selenium and tellurium in environmental samples. Analyst 122, 117–144.
Determination of selenium and tellurium in environmental samplesCrossref | GoogleScholarGoogle Scholar |

D’Ulivo A, Marcucci K, Bramanti E, Lampugnani L, Zamboni R (2000). Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 – self interference effect in hydrogen telluride generation and the effect of KI. Spectrochimica Acta. Part B, Atomic Spectroscopy 55, 1325–1336.
Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 – self interference effect in hydrogen telluride generation and the effect of KICrossref | GoogleScholarGoogle Scholar |

D’yachkova IB, Khodakovskiy IL (1968). Thermodynamic equilibria in the systems S-H2O, Se-H2O, and Te-H2 in the 25–300 °C range and their geochemical interpretations. Geochemistry International 5, 1108–1125.

de Hlasko (1922). Sur la dissociation électrolytique de I’hydrogène sélénié et de l’hydrogène telluré. Journal de Chimie Physique 20, 167–172.
Sur la dissociation électrolytique de I’hydrogène sélénié et de l’hydrogène telluréCrossref | GoogleScholarGoogle Scholar | [in French].

Earley JE, Fortnum DH, Wojcicki A, Edwards JO (1959). Constitution of aqueous oxyanions: perrhenate, tellurate and silicate ions. Journal of the American Chemical Society 81, 1295–1301.
Constitution of aqueous oxyanions: perrhenate, tellurate and silicate ionsCrossref | GoogleScholarGoogle Scholar |

Ellison HR, Edwards JO, Healy EA (1962). The polyol-tellurate complex formation reaction. I. Thermodynamics of telluric acid ionization and of complex formation. Journal of the American Chemical Society 84, 1820–1824.
The polyol-tellurate complex formation reaction. I. Thermodynamics of telluric acid ionization and of complex formationCrossref | GoogleScholarGoogle Scholar |

Etschmann BE, Li W, Pring A, Grundler PV, Tooth B, Borg S, Testemale D, Brewe D, Brugger J (2016). The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: An X-ray absorption spectroscopy study. Chemical Geology 425, 37–51.
The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: An X-ray absorption spectroscopy studyCrossref | GoogleScholarGoogle Scholar |

Filella M, Reimann C, Biver M, Rodushkin I, Rodushkina K (2019). Tellurium in the environment: current knowledge and identification of gaps. Environmental Chemistry 16,
Tellurium in the environment: current knowledge and identification of gapsCrossref | GoogleScholarGoogle Scholar |

Fouasson F (1946). Sur la constitution de l’acide tellurique [On the constitution of telluric acid]. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 222, 958–959. [in French]

Fouasson F (1948). Contribution à l’étude de l’acide tellurique [Contribution to the study of telluric acid]. Annales de Chimie 12, 594–643. [in French]

Ganelina ES, Borgoyakov VA (1971). Acid dissociation constants of tellurous acid. Russian Journal of Inorganic Chemistry 16, 318–320.

Ganelina ES, Bubnova LA (1973). The role of tellurium(VI) in the formation of heteropolyacids. Russian Journal of Inorganic Chemistry 18, 1152–1155.

Greiver TN, Zaitsev YuA (1972). Reaction of sodium tellurite and potassium tellurate with sulphide ions in alkaline solutions. Russian Journal of Inorganic Chemistry 17, 796–798.

Grundler PV, Brugger J, Etschmann BE, Helm L, Liu W, Spry PG, Tian Y-W, Testemale D, Pring A (2013). Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochimica et Cosmochimica Acta 120, 298–325.
Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold depositionCrossref | GoogleScholarGoogle Scholar |

Gutbier A (1901). Beiträge fur Kenntnis der Tellursäure. Zeitschrift für anorganische Chemie 29, 23–35. [in German]

He Z, Yang Y, Liu J-W, Yu S-H (2017). Emerging tellurium nanostructures: controllable synthesis and their applications. Chemical Society Reviews 46, 2732–2753.
Emerging tellurium nanostructures: controllable synthesis and their applicationsCrossref | GoogleScholarGoogle Scholar | 28425532PubMed |

Inzelt G (2006). Standard, formal and other characteristic potentials of selected electrode reactions. In ‘Encyclopedia of electrochemistry, Vol. 7a’ (Eds AJ Bard, M Stratmann, F Scholz, CJ Pickett) pp. 17–75. (Wiley-VCH: Weinheim)

Issa IM, Awad SA (1954). The amphoteric properties of tellurium dioxide. Journal of Physical Chemistry 58, 948–951.
The amphoteric properties of tellurium dioxideCrossref | GoogleScholarGoogle Scholar |

Kaehler HC, Brito F (1971). Estudios sobre la química del teluro. I. Teluratos (VI) (NaCl 1 M, 25 °C). Anales de Física y Química 67, 1185–1191. [in Spanish]

Kaehler HC, Mateo S, Brito F (1975a). Estudios sobre la química del teluro. V. Teluratos(VI) (KCl 1 M, 35, 40 y 45 °C). Anales de Física y Química 71, 689–691. [in Spanish]

Kaehler HC, Mateo S, Ascanio J, Brito F (1975b). Termoquímica de reacciones en disolución. II.3. Teluratos (KCl 1 M y 25 °C). Anales de Física y Química 71, 763–764. [in Spanish]

Kasarnowsky J (1923). Die Stellung des Tellurs in der Voltaschen Spannungsreihe [The position of tellurium in the electromotive series]. Zeitschrift fur Anorganische und Allgemeine Chemie 128, 17–32.
Die Stellung des Tellurs in der Voltaschen Spannungsreihe [The position of tellurium in the electromotive series]Crossref | GoogleScholarGoogle Scholar | [in German].

Kasarnowsky J (1924). Tellurige Säure als Base [Telluric acid as base]. Zeitschrift für Physikalische Chemie 109, 287–301. [in German]

Kirkpatrick LM, Pauling L (1926). XXVIII. Über die Kristallstruktur der kubischen Tellursäure. Zeitschrift für Kristallographie 63, 502–506.
XXVIII. Über die Kristallstruktur der kubischen TellursäureCrossref | GoogleScholarGoogle Scholar | [in German].

Klett A (1900). Zur Kenntniss der reducirenden Eigenschaften der Bakterien. Zeitschrift fur Hygiene und Infektionskrankheiten 33, 137–160.
Zur Kenntniss der reducirenden Eigenschaften der BakterienCrossref | GoogleScholarGoogle Scholar |

Latimer WM (1938). ‘The oxidation states of the elements and their potentials in aqueous solutions.’ (Prentice-Hall: Englewood Cliffs, NJ)

Latimer WM (1953). ‘The oxidation states of the elements and their potentials in aqueous solutions, 2nd edn.’ (Prentice-Hall: Englewood Cliffs, NJ)

Lee DS, Edmond JM (1985). Tellurium species in seawater. Nature 313, 782–785.
Tellurium species in seawaterCrossref | GoogleScholarGoogle Scholar |

Lide DR, Frederikse HPR (1995). ‘CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 76th edn.’ (CRC Press: Boca Raton, FL)

Lingane JJ, Niedrach LW (1948). Polarography of selenium and tellurium. I. The -2 states. Journal of the American Chemical Society 70, 4115–4120.
Polarography of selenium and tellurium. I. The -2 statesCrossref | GoogleScholarGoogle Scholar | 18105949PubMed |

Lourijsen-Teyssèdre M (1955). Contribution à l’étude des phénomènes de condensation en chimie minérale. 11. – Constitution des solutions de tellurates. Bulletin de la Societé Chimique de France 22, 1196–1202. [in French]

Marhold H, Sagmueller W, Gamsjaeger H (1988). The volume change for the dissociation of telluric acid. Monatshefte für Chemie 119, 1369–1373.
The volume change for the dissociation of telluric acidCrossref | GoogleScholarGoogle Scholar |

Markus Y (2018). Do doubly charged monatomicanions exist in aqueous solution?. Archives of Organic and Inorganic Chemical Sciences 2, MS.ID.000134

Maruyama Y, Yamaashi Y (1985). Adsorption and colloidal behaviour of traces of tellurium(IV) in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry 91, 67–72.
Adsorption and colloidal behaviour of traces of tellurium(IV) in aqueous solutionsCrossref | GoogleScholarGoogle Scholar |

Masson MR (1976). Some equilibrium constants of tellurous acid. Journal of Inorganic and Nuclear Chemistry 38, 545–548.
Some equilibrium constants of tellurous acidCrossref | GoogleScholarGoogle Scholar |

Masson MR, Lutz HD, Engelen B (1986). Sulfites, Selenites and Tellurites. IUPAC Solubility Data Series Volume 26. Available at: https://srdata.nist.gov/solubility/IUPAC/iupac.aspx [verified 8 March 2019]

May PM (2000). A simple, general and robust function for equilibria in aqueous electrolyte solutions to high ionic strength and temperature. Chemical Communications 0, 1265–1266.
A simple, general and robust function for equilibria in aqueous electrolyte solutions to high ionic strength and temperatureCrossref | GoogleScholarGoogle Scholar |

May PM, Rowland D (2018). JESS, a Joint Expert Speciation System - VI: Thermodynamically-consistent standard Gibbs energies of reaction for aqueous solutions. New Journal of Chemistry 42, 7617–7629.
JESS, a Joint Expert Speciation System - VI: Thermodynamically-consistent standard Gibbs energies of reaction for aqueous solutionsCrossref | GoogleScholarGoogle Scholar |

May PM, Batka D, Hefter G, Königsberger E, Rowland D (2018). Goodbye to S2− in aqueous solution. Chemical Communications 54, 1980–1983.
Goodbye to S2− in aqueous solutionCrossref | GoogleScholarGoogle Scholar | 29404555PubMed |

McPhail DC (1995). Thermodynamic properties of aqueous tellurium species between 25 and 350 °C. Geochimica et Cosmochimica Acta 59, 851–866.
Thermodynamic properties of aqueous tellurium species between 25 and 350 °CCrossref | GoogleScholarGoogle Scholar |

Mills KC (1974). ‘Thermodynamic data for inorganic sulfides, selenides, and tellurides.’ (Butterworths: London).

Milne JB (1991). Hexachlorotellurate(IV) hydrolysis equilibria in hydrochloric acid. measurement by Raman and 125Te NMR spectroscopy and a reconsideration of earlier spectrophotometric results. Canadian Journal of Chemistry 69, 987–992.
Hexachlorotellurate(IV) hydrolysis equilibria in hydrochloric acid. measurement by Raman and 125Te NMR spectroscopy and a reconsideration of earlier spectrophotometric resultsCrossref | GoogleScholarGoogle Scholar |

Milne J, Mahadevan M (1984). Chlorotellurate(lV) equilibria in aqueous hydrochloric acid. Inorganic Chemistry 23, 268–271.
Chlorotellurate(lV) equilibria in aqueous hydrochloric acidCrossref | GoogleScholarGoogle Scholar |

Milne JB, Moffett D (1974). Oxofluoro complex anion equilibria in aqueous hydrofluoric acid. I. Tellurate(IV). Inorganic Chemistry 13, 2750–2754.
Oxofluoro complex anion equilibria in aqueous hydrofluoric acid. I. Tellurate(IV)Crossref | GoogleScholarGoogle Scholar |

Murashova VI (1966). A study on the composition and stability of the iodotellurate complex. Zhurnal Analiticheskoi Khimii 21, 345–349. [in Russian]

Myers RJ (2007). Second dissociation constant of H2Te and the absorption spectra of HTe−, Te2− and Te22− in aqueous solution. Journal of Solution Chemistry 36, 395–403.
Second dissociation constant of H2Te and the absorption spectra of HTe, Te2− and Te22− in aqueous solutionCrossref | GoogleScholarGoogle Scholar |

Nabivanets BI, Kapantsyan EE, Oganesyan EN (1974). The state of tellurium(IV) in perchloric acid solutions. Russian Journal of Inorganic Chemistry 19, 394–397.

Nabivanets BI, Oganesyan EN, Kapantsyan EE (1980). Tellurium(IV) sulphato-complexes in solution. Russian Journal of Inorganic Chemistry 25, 313–314.

Nazarenko VA, Shitareva GG, Poluektova EN (1973). The ionisation constants of tellurous and selenous acids. Russian Journal of Inorganic Chemistry 18, 609–611.

Nazarenko VA, Shitareva GG, Poluektova EN (1977). Spectrophotometric determination of the formation constants of tellurium(IV) hydroxo-complexes. Russian Journal of Inorganic Chemistry 22, 541–544.

Oganesyan EN, Kapantsyan EE, Nabivanets BI, Babayan GG (1982). Nitrato-complexes of tellurium(IV) in solution. Russian Journal of Inorganic Chemistry 27, 1124–1125.

Panson AJ (1963). Polarography of the ditelluride ion. Journal of Physical Chemistry 67, 2177–2180.
Polarography of the ditelluride ionCrossref | GoogleScholarGoogle Scholar |

Panson AJ (1964). A study of the telluride ion system. Journal of Physical Chemistry 68, 1721–1724.
A study of the telluride ion systemCrossref | GoogleScholarGoogle Scholar |

Ripan R, Marc M (1966). Détermination de la constante d’instabilité des acides hexachloro- et hexabromotelluriques [Determination of the instability constants of hexachloro- and hexabromo- tellurides]. Revue Roumaine de Chimie 11, 1063–1067. [in French]

Rosenheim A, Jander G (1918). Ueber die Tellursäure und ihre Alkalisalze in ihrem Verhaiten als Halbkolloide [On telluric acid and its alkali salts in their colloidal state]. Kolloid-Zeitschrift 22, 23–44.
Ueber die Tellursäure und ihre Alkalisalze in ihrem Verhaiten als Halbkolloide [On telluric acid and its alkali salts in their colloidal state]Crossref | GoogleScholarGoogle Scholar | [in German].

Schuhmann R (1925). The free energy and heat content of tellurium dioxide and of amorphous and metallic tellurium. The reduction potential of tellurium. Journal of the American Chemical Society 47, 356–363.
The free energy and heat content of tellurium dioxide and of amorphous and metallic tellurium. The reduction potential of telluriumCrossref | GoogleScholarGoogle Scholar |

Shitareva GG, Nazarenko VA (1967). Bromo-complexes of tellurium(IV). Russian Journal of Inorganic Chemistry 12, 527–530.

Shitareva GG, Nazarenko VA (1968). Stability constants of the chloro-complexes of tellurium. Russian Journal of Inorganic Chemistry 13, 941–943.

Siebert H (1959). Ultrarotspektren von Tellursäuren, Telluraten und Antimonaten. Zeitschrift für anorganische Chemie 301, 161–170.
Ultrarotspektren von Tellursäuren, Telluraten und AntimonatenCrossref | GoogleScholarGoogle Scholar | [in German].

Sillén LG, Martell AE (1964). ‘Stability constants of metal-ion complexes SP17.’ (The Chemical Society: London)

Sillén LG, Martell AE (1971). ‘Stability constants of metal-ion complexes SP25, Supplement No. 1 to Special Publication No. 25.’ (The Chemical Society: London)

Tucker FL, Walper JF, Appleman MD, Donohue J (1962). Complete reduction of tellurite to pure tellurium metal by microorganisms. Journal of Bacteriology 83, 1313–1314.

USGS (2018). Selenium and Tellurium. Statistics and Information. Available at: https://minerals.usgs.gov/minerals/pubs/commodity/selenium/ [verified 8 March 2019]

Yagasaki A, Sasaki Y (1987). Potentiometric study of heteropolyanion formation from telluric acid and molybdate anion in 1M Na(Cl). Bulletin of the Chemical Society of Japan 60, 763–764.
Potentiometric study of heteropolyanion formation from telluric acid and molybdate anion in 1M Na(Cl)Crossref | GoogleScholarGoogle Scholar |

Zweibel K (2010). The impact of tellurium supply on cadmium telluride photovoltaics. Science 328, 699–701.
The impact of tellurium supply on cadmium telluride photovoltaicsCrossref | GoogleScholarGoogle Scholar | 20448173PubMed |