Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Activation of sodium percarbonate with ferrous ions for degradation of chlorobenzene in aqueous solution: mechanism, pathway and comparison with hydrogen peroxide

Sai Zhang A B , Xuebin Hu A , Li Li A , Xiaoliu Huangfu A , Yingzhi Xu A and Yuhang Qin A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China.

B Corresponding author. Email: zhangsai@cqu.edu.cn

Environmental Chemistry 14(8) 486-494 https://doi.org/10.1071/EN17137
Submitted: 29 July 2017  Accepted: 2 November 2017   Published: 16 March 2018

Environmental context. It is practicable to remediate chlorobenzene-contaminated groundwater by in situ chemical oxidation. This study shows highly efficient degradation of chlorobenzene by an Fe-based process in a wide range of pH values. The technology is feasible for the removal of chlorobenzene from aqueous solutions and is appropriate for remediation of groundwater.

Abstract. Sodium percarbonate (SPC) could be applied as a strong oxidant to degrade organic compounds activated by transition metals. In this study, the degradation performance of chlorobenzene (CB) in the Fe2+-catalysed SPC system was investigated at different Fe2+ and SPC concentrations and pH conditions. Fe2+/Fe3+ conversion was also studied, and the SPC system was compared with the H2O2 and H2O2/Na2CO3 systems. Free radicals were identified through scavenging tests and electron paramagnetic resonance (EPR) experiments, and the reaction intermediates and by-products were determined as well. The results show that CB was completely removed when the molar concentration ratio of Fe2+/SPC/CB was 8 : 8 : 1 and that the decomposition of CB increased as the initial Fe2+/SPC dosage increased. The optimal molar concentration of Fe2+/SPC/CB was 2 : 1 : 1, and the degradation rate was inhibited when increasing or decreasing Fe2+ or SPC. CB degradation was not significantly affected by variation of initial pH, and the variation of pH during the degradation process corresponded well with the degree of Fe2+ to Fe3+ conversion and the formation of OH. It was confirmed that OH, O2•− and 1O2 participate in the degradation process. Moreover, not all the OH takes part in the degradation process, as some transforms into O2•− and 1O2. The same degradation efficiency was obtained when replacing SPC by equal stoichiometric amounts of H2O2, compared with inhibition with the addition of Na2CO3. Further, a likely degradation pathway for CB is proposed based on the identified products. These results show that the Fe2+/SPC system can form the basis of a promising technology for the remediation of CB-contaminated groundwater.

Additional keywords: degradation pathway, Fe2+-catalysed, Fe2+/Fe3+ conversion, free radicals, pH.


References

[1]  Z. Kurt, J. C. Spain, Biodegradation of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene in the vadose zone Environ. Sci. Technol. 2013, 47, 6846.
Biodegradation of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene in the vadose zoneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslSgtLk%3D&md5=267ce9dae894a273e591caeca3b26b45CAS |

[2]  R. R. Wu, S. N. Wang, L. M. Wang, Atmospheric oxidation mechanism of chlorobenzene Chemosphere 2014, 111, 537.
Atmospheric oxidation mechanism of chlorobenzeneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWgtb%2FF&md5=430cf41b7f9a33da14719949a871c755CAS |

[3]  X. Zhang, Y. Q. Wu, Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwater Water Sci. Technol. 2017, 75, 571.
Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwaterCrossref | GoogleScholarGoogle Scholar |

[4]  L. Liu, G. H. Zhao, M. F. Wu, Y. Z. Lei, R. Geng, Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes J. Hazard. Mater. 2009, 168, 179.
Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVyisro%3D&md5=ef16eea6f23276e3bb6a05ba1cab0f26CAS |

[5]  X. M. Liang, C. E. Devine, J. Nelson, B. S. Lollar, S. Zinder, E. A. Edwards, Anaerobic conversion of chlorobenzene and benzene to CH4 and CO2 in bioaugmented microcosms Environ. Sci. Technol. 2013, 47, 2378.
Anaerobic conversion of chlorobenzene and benzene to CH4 and CO2 in bioaugmented microcosmsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Oju78%3D&md5=a9f1d04be6f83e1448af4f93b3223a5bCAS |

[6]  H. He, X. Yu, Y. Huan, W. Zhang, Natural attenuation of chlorobenzene in a deep confined aquifer during artificial recharge process Int. J. Environ. Sci. Technol. 2016, 13, 319.
Natural attenuation of chlorobenzene in a deep confined aquifer during artificial recharge processCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSjurzI&md5=58ed732d3a4998785bced869a0096cceCAS |

[7]  Y. Y. Guo, Y. R. Li, J. Wang, T. Y. Zhu, M. Ye, Effects of activated carbon properties on chlorobenzene adsorption and adsorption product analysis Chem. Eng. J. 2014, 236, 506.
Effects of activated carbon properties on chlorobenzene adsorption and adsorption product analysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKrtrjL&md5=b7446b515135c76cfac7f6736ada9d9fCAS |

[8]  F. G. Shahna, A. Bahrami, I. Alimohammadi, R. Yarahmadi, B. Jaleh, M. Gandomi, H. Ebrahimi, K. A.-D. Abedi, Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: effect of photocatalyst on CO2 selectivity and by-products reduction J. Hazard. Mater. 2017, 324, 544.
Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: effect of photocatalyst on CO2 selectivity and by-products reductionCrossref | GoogleScholarGoogle Scholar |

[9]  H. C. Liu, Z. Y. Pan, Visual observations and Raman spectroscopic studies of supercritical water oxidation of chlorobenzene in an anticorrosive fused-silica capillary reactor Environ. Sci. Technol. 2012, 46, 3384.
Visual observations and Raman spectroscopic studies of supercritical water oxidation of chlorobenzene in an anticorrosive fused-silica capillary reactorCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Ogt74%3D&md5=68b1ee172056816118be1a329df2ad89CAS |

[10]  C. Gannoun, A. Turki, H. Kochkar, R. Delaigle, P. Eloy, A. Ghorbel, E. M. Gaigneaux, Elaboration and characterization of sulfated and unsulfated V2O5/TiO2 nanotubes catalysts for chlorobenzene total oxidation Appl. Catal. B 2014, 147, 58.
Elaboration and characterization of sulfated and unsulfated V2O5/TiO2 nanotubes catalysts for chlorobenzene total oxidationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOit7bE&md5=07a7ba457a4c04a0de294cf4ef767dfcCAS |

[11]  C. Luo, Z. Chen, D. L. Wu, L. M. Ma, Electrochemical reductive degradation of chlorobenzene using galvanically replaced Pd/Fe nanoscale particles Chem. Eng. J. 2014, 241, 376.
Electrochemical reductive degradation of chlorobenzene using galvanically replaced Pd/Fe nanoscale particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSltL3N&md5=49519ecc78118fde748fe206eec6195bCAS |

[12]  V. L. Gole, P. R. Gogate, Intensification of sonochemical degradation of chlorobenzene using additives Desalination Water Treat. 2015, 53, 2623.
Intensification of sonochemical degradation of chlorobenzene using additivesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKnsLfF&md5=0eba635bbe6b760627e98281642b8bb1CAS |

[13]  R. Y. Zhu, Y. B. Mao, L. Y. Jiang, J. M. Chen, Performance of chlorobenzene removal in a non-thermal plasma catalysis reactor and evaluation of its by-products Chem. Eng. J. 2015, 279, 463.
Performance of chlorobenzene removal in a non-thermal plasma catalysis reactor and evaluation of its by-productsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVCgsrg%3D&md5=a091eec01f1aceb0acf8a949ffd4b1acCAS |

[14]  D. L. Sedlak, A. W. Andren, Oxidation of chlorobenzene with Fenton’s reagent Environ. Sci. Technol. 1991, 25, 777.
Oxidation of chlorobenzene with Fenton’s reagentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1ygtL4%3D&md5=bd465611c4d859be4b7b905a79f7b81aCAS |

[15]  H. Zazou, N. Oturan, M. Sönmez-Çelebi, M. Hamdani, M. A. Oturan, Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode J. Electroanal. Chem. 2016, 774, 22.
Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathodeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotFals7Y%3D&md5=acd6b6b9ee1a93204b7cb631dc27b692CAS |

[16]  M. Pagano, A. Volpe, A. Lopez, G. Mascolo, R. Ciannarella, Degradation of chlorobenzene by Fenton‐like processes using zero-valent iron in the presence of Fe3+ and Cu2+ Environ. Technol. 2011, 32, 155.
Degradation of chlorobenzene by Fenton‐like processes using zero-valent iron in the presence of Fe3+ and Cu2+Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKqsr4%3D&md5=c1ae2502963d3f36f161baf4eb00fe18CAS |

[17]  A. D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes J. Hazard. Mater. 2014, 275, 121.
Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12ls7c%3D&md5=7b5b50b2e5ee2db2c88592989045a478CAS |

[18]  E. Mousset, L. Frunzo, G. Esposito, E. D. v. Hullebuscha, N. Oturana, M. A. Oturan, A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study Appl. Catal. B 2016, 180, 189.
A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOktbrE&md5=7eb0ce8695b305121b1940c577d1be3dCAS |

[19]  M. Q. Cai, Y. Z. Zh, Z. S. We, J. Q. Hu, S. D. Pan, R. Y. Xiao, C. Y. Dong, M. C. Jin, Rapid decolorization of dye Orange G by microwave-enhanced Fenton-like reaction with delafossite-type CuFeO2 Sci. Total Environ. 2017, 580, 966.
Rapid decolorization of dye Orange G by microwave-enhanced Fenton-like reaction with delafossite-type CuFeO2Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitV2rsb7P&md5=bdf59f81c76e359376428c83604552b5CAS |

[20]  Y. Wang, J. S. Fang, J. C. Crittenden, C. C. Shen, Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation J. Hazard. Mater. 2017, 329, 321.
Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXitlOrtbY%3D&md5=c3060cd047c833c69bb5cf56af20cd64CAS |

[21]  M. Danish, X. G. Gu, S. G. Lu, A. Ahmad, M. Naqvi, U. Farooq, X. Zhang, X. R. Fu, Z. W. Miao, Y. F. Xue, Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite-supported nano zero-valent iron–copper bimetallic composite Chem. Eng. J. 2017, 308, 396.
Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite-supported nano zero-valent iron–copper bimetallic compositeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2gtrnK&md5=9a91a8938326d0269ad87b56201b4c8eCAS |

[22]  A. A. Babaei, F. Ghanbari, COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluation J. Water Reuse Desalin. 2016, 6, 484.
COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXjs1yrsrk%3D&md5=e59a734172e43cfa59749d382c6a8d12CAS |

[23]  T. Wada, N. Koga, Chemical composition of sodium percarbonate: an inquiry-based laboratory exercise J. Chem. Educ. 2013, 90, 1048.
Chemical composition of sodium percarbonate: an inquiry-based laboratory exerciseCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVOjsr0%3D&md5=c7cfe114746bb03b0b4f8ef67aea0562CAS |

[24]  A. McKillop, W. R. Sanderson, Sodium perborate and sodium percarbonate: cheap, safe and versatile oxidising agents for organic synthesis Tetrahedron 1995, 51, 6145.
Sodium perborate and sodium percarbonate: cheap, safe and versatile oxidising agents for organic synthesisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFOhtb4%3D&md5=42216a38efe6d81456e0da20dd7a3e51CAS |

[25]  F. J. Rivas, O. Gimeno, T. Borralho, M. Carbajo, UV-C radiation-based methods for aqueous metoprolol elimination J. Hazard. Mater. 2010, 179, 357.
UV-C radiation-based methods for aqueous metoprolol eliminationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVGlt78%3D&md5=f237606660ebd4f3eaff7714bb422c07CAS |

[26]  M. Viisimaa, A. Goi, Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soil J. Environ. Eng. Landsc. 2014, 22, 30.
Use of hydrogen peroxide and percarbonate to treat chlorinated aromatic hydrocarbon-contaminated soilCrossref | GoogleScholarGoogle Scholar |

[27]  G. Cravotto, S. D. Carlo, B. Ondruschka, V. Tumiatti, C. M. Roggero, Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves Chemosphere 2007, 69, 1326.
Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwavesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWit7rP&md5=2c1f897b8aaec423ce2ae1710a7f9916CAS |

[28]  Z. W. Miao, X. G. Gu, S. G. Lu, X. K. Zang, X. L. Wu, M. H. Xu, L. B. B. Ndong, Z. F. Qiu, Q. Sui, G. Y. Fu, Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism Chemosphere 2015, 119, 1120.
Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanismCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ymu73O&md5=14a919651c172ba55b9dadcdd2310a7dCAS |

[29]  H. R. Sindelar, M. T. Brown, T. H. Boyer, Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources Chemosphere 2014, 105, 112.
Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sourcesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktFKluw%3D%3D&md5=cec4fbd3715c3f30fe88a39f3473dd2bCAS |

[30]  J. Lemaire, V. Croze, J. Maier, M. O. Simonnot, Is it possible to remediate a BTEX-contaminated chalky aquifer by in situ chemical oxidation? Chemosphere 2011, 84, 1181.
Is it possible to remediate a BTEX-contaminated chalky aquifer by in situ chemical oxidation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1eiur4%3D&md5=54c8a4063771f084e1fd4520ab029eefCAS |

[31]  E. Pesman, S. Imamoglu, E. E. Kalyoncu, H. Kirci, The effects of sodium percarbonate and perborate usage on pulping and flotation deinking instead of hydrogen peroxide BioResources 2014, 9, 523.
| 1:CAS:528:DC%2BC2cXhvFaisLc%3D&md5=131b50b0af87865e1a8a88d4735ca0a1CAS |

[32]  K. Nakashima, Y. Ebi, M. Kubo, N. Shibasaki-Kitakawa, T. Yonemoto, Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover Ultrason. Sonochem. 2016, 29, 455.
Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stoverCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslygsLzJ&md5=1703574bd194e7eed173477754a80425CAS |

[33]  H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III) Talanta 1974, 21, 314.
Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksVCqsbY%3D&md5=569b88b1674cbbb6a9b6fce3a290927aCAS |

[34]  X. R. Fu, X. G. Gu, S. G. Lu, Z. W. Miao, M. H. Xu, X. Zhang, Z. F. Qiu, Q. Sui, Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution Chem. Eng. J. 2015, 267, 25.
Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVKlsA%3D%3D&md5=fb0ce815ce6e38419baa2fa132a5427eCAS |

[35]  A. Georgi, M. V. Polo, K. Crincoli, K. Mackenzie, F. D. Kopinke, Accelerated catalytic Fenton reaction with traces of iron: an Fe–Pd-multicatalysis approach Environ. Sci. Technol. 2016, 50, 5882.
Accelerated catalytic Fenton reaction with traces of iron: an Fe–Pd-multicatalysis approachCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xns1altL0%3D&md5=be04381872c47ce826502bc3276a3fe0CAS |

[36]  E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique J. Hazard. Mater. 2003, 98, 33.
A review of classic Fenton’s peroxidation as an advanced oxidation techniqueCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslKjsLw%3D&md5=7add5801cf1e2257cab1062d1780e79dCAS |

[37]  J. J. Pignatello, Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide Environ. Sci. Technol. 1992, 26, 944.
Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxideCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitVSgtrs%3D&md5=cd4004f5450ca835ddbf615c006942b9CAS |

[38]  N. Masomboon, C. Ratanatamskul, M. C. Lu, Kinetics of 2,6-dimethylaniline oxidation by various Fenton processes J. Hazard. Mater. 2011, 192, 347.
Kinetics of 2,6-dimethylaniline oxidation by various Fenton processesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlemu70%3D&md5=8ccc7e8ce30f1a29d2e580ae93efb1c1CAS |

[39]  C. Walling, A. Goosen, Mechanism of the ferric ion-catalyzed decomposition of hydrogen peroxide. Effect of organic substrates J. Am. Chem. Soc. 1973, 95, 2987.
Mechanism of the ferric ion-catalyzed decomposition of hydrogen peroxide. Effect of organic substratesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktFShtb8%3D&md5=0e3d37e9184dca6ab14da09efdda7e6eCAS |

[40]  W. Y. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe(III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A Environ. Sci. Technol. 2013, 47, 1952.
Assessment of the Fe(III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol ACrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Kls7o%3D&md5=6e05c383b6c45b261c1d3066f4d8fc98CAS |

[41]  A. De Luca, R. F. Dantas, S. Esplugas, Assessment of iron chelates efficiency for photo-Fenton at neutral pH Water Res. 2014, 61, 232.
Assessment of iron chelates efficiency for photo-Fenton at neutral pHCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WqurrO&md5=5f08553a22115572819834413100d920CAS |

[42]  J. J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry Crit. Rev. Environ. Sci. Technol. 2006, 36, 1.
Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WhtA%3D%3D&md5=476938e6aa9be064014ad497ba05f4b9CAS |

[43]  Y. X. Qin, F. H. Song, Z. H. Ai, P. P. Zhang, L. Z. Zhang, Protocatechuic acid-promoted alachlor degradation in Fe(III)/H2O2 Fenton system Environ. Sci. Technol. 2015, 49, 7948.
Protocatechuic acid-promoted alachlor degradation in Fe(III)/H2O2 Fenton systemCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVSht7vI&md5=0a8fc390f675c9420ec0d4f88a8c01fbCAS |

[44]  L. Zhou, W. Song, Z. Q. Chen, G. C. Yin, Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst Environ. Sci. Technol. 2013, 47, 3833.
Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalystCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFeksbk%3D&md5=0c0a712d3cf141d15712c982da447fdcCAS |

[45]  G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous solution J. Phys. Chem. Ref. Data 1988, 17, 513.
Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O–) in aqueous solutionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFyisLc%3D&md5=40203f5b358d2af1ed8dd7c38b6c78acCAS |

[46]  R. J. Watts, B. C. Bottenberg, T. F. Hess, M. D. Jensen, A. L. Teel, Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions Environ. Sci. Technol. 1999, 33, 3432.
Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1ans7o%3D&md5=f776e67911bdcb327723b74a460a1c7fCAS |

[47]  C. L. Wu, K. Linden, Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals Water Res. 2010, 44, 3585.
Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOmsL0%3D&md5=b45a74b40f2e540bd4de643f429971a6CAS |

[48]  M. L. Dell’Arciprete, J. M. Soler, L. Santos-Juanes, A. Arques, D. O. Mártire, J. P. Furlong, M. C. Gonzalez, Reactivity of neonicotinoid insecticides with carbonate radicals Water Res. 2012, 46, 3479.
Reactivity of neonicotinoid insecticides with carbonate radicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1OisLg%3D&md5=5943db1b71e4f60c51548758597006b3CAS |

[49]  T. Umschlag, H. Herrmann, The carbonate radical (HCO3•/CO3•−) as a reactive intermediate in water chemistry: kinetics and modelling Acta Hydrochim. Hydrobiol. 1999, 27, 214.
The carbonate radical (HCO3/CO3•−) as a reactive intermediate in water chemistry: kinetics and modellingCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVGjs7s%3D&md5=46a32c2c6916c26959c634c0b98f4d52CAS |

[50]  W. X. Qin, G. D. Fang, Y. J. Wang, T. L. Wu, C. Y. Zhu, D. M. Zhou, Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: kinetics, products, and reactive species identification Chemosphere 2016, 148, 68.
Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: kinetics, products, and reactive species identificationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtF2rsL8%3D&md5=ec927f05353ec439385bf6d4890a6ffeCAS |

[51]  G. Kovacevic, A. Sabljic, Mechanisms and reaction-path dynamics of hydroxyl radical reactions with aromatic hydrocarbons: the case of chlorobenzene Chemosphere 2013, 92, 851.
Mechanisms and reaction-path dynamics of hydroxyl radical reactions with aromatic hydrocarbons: the case of chlorobenzeneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Krtbg%3D&md5=2bb9fc7abd1f6880b256c42c02ddac23CAS |

[52]  X. R. Fu, X. G. Gu, S. G. Lu, V. K. Sharma, M. L. Brusseau, Y. F Xue, M. Danish, G. Y. Fu, Z. F. Qiu, Q. Sui, Benzene oxidation by Fe(III)-activated percarbonate: matrix-constituent effects and degradation pathways Chem. Eng. J. 2017, 309, 22.
Benzene oxidation by Fe(III)-activated percarbonate: matrix-constituent effects and degradation pathwaysCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs12nsb%2FK&md5=41d6f2e640fe25363d1cfd9b5fbc1e01CAS |

[53]  C. Stavarache, B. Yim, M. Vinatoru, Y. Maed, Sonolysis of chlorobenzene in Fenton-type aqueous systems Ultrason. Sonochem. 2002, 9, 291.
Sonolysis of chlorobenzene in Fenton-type aqueous systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1KqsLo%3D&md5=c5749265ae5332b3879215e2044821f9CAS |