Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

A comparative structural study of nitrogen-rich fulvic acids from various Antarctic lakes

Sahar Farzadnia A B , Rama D. Nimmagadda A and Christopher McRae A
+ Author Affiliations
- Author Affiliations

A Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.

B Corresponding author. Email: sfarzadnia@gmail.com

Environmental Chemistry 14(8) 502-514 https://doi.org/10.1071/EN17095
Submitted: 10 May 2017  Accepted: 14 November 2017   Published: 20 March 2018

Environmental context. Fulvic acids are important naturally occurring organic materials, but unravelling their complex structures remains challenging. This paper suggests chemical analyses to facilitate structural studies of fulvic acids, and to investigate the similarities and differences of fulvic acids from various natural sources.

Abstract. We comprehensively examined fulvic acids isolated from three lakes in Vestfold Hills, eastern Antarctica and microbial reference fulvic acid from Pony Lake located in western Antarctica. These fulvic acids were compared in terms of their structural similarities and differences by means of elemental analysis, cross polarisation magic-angle spinning (CP-MAS) 13C NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and tetramethylammonium hydroxide (TMAH) thermochemolysis coupled to gas chromatography–mass spectrometry (GC-MS). The results indicate that these Antarctic fulvic acids show notable differences in chemical composition and structure; in particular XPS demonstrates that the distribution of nitrogen-containing compounds in the nitrogen-rich Antarctic fulvic acids differ significantly from each other. The dissimilarities are also highlighted in terms of quantity and quality of their nitrogenous constituents. For instance, Organic Lake Fulvic Acid (OLFA) contains around 10 times lower amide groups (pyrimidine–peptide N) than Pendant Lake Fulvic Acid (PNFA). It also shows 1.5 times less quaternary amine than Mossel Lake Fulvic Acid (MLFA) and PNFA. According to CP-MAS 13C NMR experiments the carbohydrate content in Vestfold Hills fulvic acid is higher than that of Pony Lake Fulvic Acid (PLFA), suggesting that dissolved organic matter (DOM) from Vestfold Hills Lakes is immature. TMAH–GC-MS demonstrated that Antarctic fulvic acids are enriched in heterocyclic non-aromatic nitrogen-containing components such as pyrimidine structures, with the exception of OLFA. Furthermore, tricyclic terpenoids (dehydroabietic acid) were detected in two out of four fulvic acids tabulated using TMAH–GC-MS. Although diterpenes are commonly associated with plants and fungi, their occurrence in Antarctic fulvic acids could be justified due to their diverse origins from cyanobacteria to aerosols.


References

[1]  E. M. Thurman, Humic Substances in groundwater, in Humic Substances in Soil Sediment and Water (Eds G. R. Aiken,D.M. McKnight, R.L. Wershaw, P. MacCarthy) 1985, pp. 87–103 (Wiley Interscience: New York).

[2]  J. C. Dobbs, W. Susetyo, F. E. Knight, M. A. Castles, L. A. Carreira, L. V. Azarraga, Characterization of metal binding sites in fulvic acids bylanthanide ion probe spectroscopy Anal. Chem. 1989, 61, 483.
Characterization of metal binding sites in fulvic acids bylanthanide ion probe spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXnsVantw%3D%3D&md5=bce922817e406c810f6067f7e0d79da1CAS |

[3]  A. Violante, V. Cozzolino, L. Perelomov, A. G. Caporale, M. Pigna, Mobility and bioavailability of heavy metals and metalloids in soil environments J. Soil Sci. Plant Nutr. 2010, 10, 268.
Mobility and bioavailability of heavy metals and metalloids in soil environmentsCrossref | GoogleScholarGoogle Scholar |

[4]  H. Xu, B. Allard, Effects of a fulvic acid on the speciation and mobility of mercury in aqueous solutions Water Air Soil Pollut. 1991, 56, 709.
Effects of a fulvic acid on the speciation and mobility of mercury in aqueous solutionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1arurk%3D&md5=19f5b08cf9db40248be5fbae780fa1a6CAS |

[5]  S. S. Lee, K. L. Nagy, C. Park, P. Fenter, Enhanced uptake and modified distribution of mercury (II) by fulvic acid on the muscovite (001) surface Environ. Sci. Technol. 2009, 43, 5295.
Enhanced uptake and modified distribution of mercury (II) by fulvic acid on the muscovite (001) surfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFygsb8%3D&md5=70090445bd1ea9380bef9b5b78529e7eCAS |

[6]  S. S. Lee, K. L. Nagy, C. Park, P. Fenter, Heavy metal sorption at the muscovite (001)–fulvic acid interface Environ. Sci. Technol. 2011, 45, 9574.
Heavy metal sorption at the muscovite (001)–fulvic acid interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGjt7vI&md5=d84a9e9b371b0a80b74c1fd60f408aecCAS |

[7]  C. T. Chiou, R. L. Malcolm, T. I. Brinton, D. E. Kile, Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids Environ. Sci. Technol. 1986, 20, 502.
Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsFGntb8%3D&md5=ea5f40c398a1b28bbf211ddb5d6f88e8CAS |

[8]  G. R. Aiken, D. M. McKnight, R. Harnish, R. Wershaw, Geochemistry of aquatic humic substances in the Lake Fryxell Basin Antarctica Biogeochemistry 1996, 34, 157.
Geochemistry of aquatic humic substances in the Lake Fryxell Basin AntarcticaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1Sht74%3D&md5=9bc2b8fa20a374f5b5f18cc7d14329abCAS |

[9]  G. R. Aiken, D. M. McKnight, K. A. Thorn, E. M. Thurman, Isolation of hydrophilic organic acids from water using nonionic macroporous resins Org. Geochem. 1992, 18, 567.
Isolation of hydrophilic organic acids from water using nonionic macroporous resinsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFyjtb4%3D&md5=b33bc307eabfc368b6447aab9e60a9aaCAS |

[10]  I. Matsumoto, Biogeochemical study of organic substances in Antarctic lakes Hydrobiologia 1989, 172, 265.
Biogeochemical study of organic substances in Antarctic lakesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFymt74%3D&md5=83f750342854dfee62ad25e1adfc30ceCAS |

[11]  D. M. McKnight, G. R. Aiken, R. L. Smith, Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in Antarctica Limnol. Oceanogr. 1991, 36, 998.
Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in AntarcticaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1Gguw%3D%3D&md5=294dc3f99eb3cec5c6f30fcbf360a667CAS |

[12]  D. M. McKnight, E. D. Andrews, S. A. Spaulding, G. R. Aiken, Aquatic fulvic acids in algal-rich antarctic ponds Limnol. Oceanogr. 1994, 39, 1972.
Aquatic fulvic acids in algal-rich antarctic pondsCrossref | GoogleScholarGoogle Scholar |

[13]  J. D’Andrilli, C. M. Foreman, A. G. Marshall, D. M. McKnight, Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy Org. Geochem. 2013, 65, 19.
Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSltr3I&md5=7b5c09eb52d1e32b3ed9eacf7d0951b6CAS |

[14]  G. Abbt-Braun, U. Lankes, F. H. Frimmle, Structural characterization of aquatic humic substances –The need for a multiple method approach Aquat. Sci. 2004, 66, 151.
Structural characterization of aquatic humic substances –The need for a multiple method approachCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Kgsb4%3D&md5=202cf397f36612e1a4b45d313a321f26CAS |

[15]  J. A. Leenheer, Systematic Approaches to comprehensive analyses of natural organic matter Ann. Environ. Sci. (Boston Mass.) 2009, 3, 1.
| 1:CAS:528:DC%2BD1MXnslChtr0%3D&md5=5789f457e09e5ba9f559a314cebadf86CAS |

[16]  R. L. Fimmen, R. M. Cory, Y. P. Chin, T. D. Trouts, D. M. McKnight, Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter Geochim. Cosmochim. Acta 2007, 71, 3003.
Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWhs78%3D&md5=a260570bbc8d2c473be2cf38632704b1CAS |

[17]  F. Monteil-Rivera, E. B. Brouwer, S. Masset, Y. Deslandes, J. Dumonceaua, Combination of X-ray photoelectron and solid-state 13C nuclear magnetic resonance spectroscopy in the structural characterisation of humic acids Anal. Chim. Acta 2000, 424, 243.
Combination of X-ray photoelectron and solid-state 13C nuclear magnetic resonance spectroscopy in the structural characterisation of humic acidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1ertLg%3D&md5=af6274a41bc96a1ce42dbac224d7dc6bCAS |

[18]  M. R. Leishman, C. Wild, Vegetation abundance and diversity in relation to soil nutrients and soil water content in Vestfold Hills, East Antarctica Antarct. Sci. 2001, 13, 126.
Vegetation abundance and diversity in relation to soil nutrients and soil water content in Vestfold Hills, East AntarcticaCrossref | GoogleScholarGoogle Scholar |

[19]  S. Van Trappen, Biodiversity of bacterial isolates from Antarctic lakes and polar seas, PhD thesis 2004, Ghent University, Ghent, Belgium.

[20]  H. R. Burton, Chemistry, physics and evolution of Antarctic saline lakes Hydrobiologia 1981, 81, 339.
Chemistry, physics and evolution of Antarctic saline lakesCrossref | GoogleScholarGoogle Scholar |

[21]  D. Adamson, J. Pickard, Antarctic Oasis: Terrestrial Environment and History of the Vestfold Hills 1986 (Academic Press: London).

[22]  J. P. Bowman, S. M. Rea, S. A. McCammon, T. A. McMeekin, Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, eastern Antarctica Environ. Microbiol. 2000, 2, 227.
Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, eastern AntarcticaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslSnsbc%3D&md5=6f98b3f6c5f7fa89730f7b2c8ec48308CAS |

[23]  J. K. Volkman, S. W. Jeffrey, P. D. Nichols, G. L. Rogers, C. D. Garland, Fatty acid and lipid composition of 10 species of microalgae used in mariculture J. Exp. Mar. Biol. Ecol. 1989, 128, 219.
Fatty acid and lipid composition of 10 species of microalgae used in maricultureCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFShsLY%3D&md5=edd798a7a9518e85596de826ba9f02ecCAS |

[24]  D. Roberts, A. McMinn, Diatoms of saline lakes of the Vestfold Hills, Antarctica, in Bibliotheca Diatomologica (Ed. J. Cramer) 1999, 44, pp. 1–83 (Gebrüder Borntraeger Verlag: Berlin).

[25]  A. Brown, D. M. McKnight, Y. P. Chin, E. C. Roberts, M. Uhle, Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica Mar. Chem. 2004, 89, 327.
Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in AntarcticaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslGit7c%3D&md5=0b423da794503b62d26b67cb052f6850CAS |

[26]  J. A. Leenheer, J. P. Croue, M. Benjamin, G. V. Korshin, C. J. Hwang, A. Bruchet, G. Aiken, Comprehensive isolation of natural organic matter for spectral characterization and reactivity testing, in Natural Organic Matter and Disinfection By-Products (Eds S. E. Barrett, S.W. Krasner, G. L. Amy) ACS Symposium Series 761, 2000, pp. 68–83 (American Chemical Society: Washington DC).

[27]  F. Orata, Derivatization reactions and reagents for gas chromatography analysis, in Advanced Gas Chromatography Progress in Agricultural, Biomedical and Industrial Applications (Eds M. A. Mohd) 2012, pp. 83–108 (InTech: Croatia).

[28]  J. A. E. Gibson, X. L. Qiang, P. D. Franzmann, R. C. Garrick, H. R. Burton, Volatile fatty and dissolved free amino acids in Organic Lake, Vestfold Hills, East Antarctica Polar Biol. 1994, 14, 545.
Volatile fatty and dissolved free amino acids in Organic Lake, Vestfold Hills, East AntarcticaCrossref | GoogleScholarGoogle Scholar |

[29]  C. Keeler, G. E. Maciel, Quantitation in the solid-state 13C NMR analysis of soil and organic soil fractions Anal. Chem. 2003, 75, 2421.
Quantitation in the solid-state 13C NMR analysis of soil and organic soil fractionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgurg%3D&md5=3f93459077d064388d56bcd1652a5d0bCAS |

[30]  M. S. Solum, R. J. Pugmire, D. M. Grant, Carbon-13 solid-state NMR of Argonne-premium coals Energy Fuels 1989, 3, 187.
Carbon-13 solid-state NMR of Argonne-premium coalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFOqu7k%3D&md5=9472eb01fef2a274317c2d1a0b533b76CAS |

[31]  P. Kinchesh, D. S. Powlson, E. W. Randall, 13C NMR studies of organic matter in whole soils: I. Quantitation possibilities Eur. J. Soil Sci. 1995, 46, 125.
13C NMR studies of organic matter in whole soils: I. Quantitation possibilitiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtlGgtLk%3D&md5=450f4651dfb132867a446d9cd3c57a7cCAS |

[32]  G. R. Harvey, D. A. Boran, L. A. Chesal, J. M. Tokar, The structure of marine fulvic and humic acids Mar. Chem. 1983, 12, 119.
The structure of marine fulvic and humic acidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Kmtbo%3D&md5=656a0d0e7b216210a4111a7bf938266eCAS |

[33]  C. L. Osburn, D. P. Morris, K. A. Thorn, R. E. Moeller, Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation Biogeochemistry 2001, 54, 251.
Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Wju78%3D&md5=8aa42ef9b148f917dc5ee41c637eca46CAS |

[34]  K. A. Thorn, S. J. Younger, L. G. Cox, Order of functionality loss during photodegradation of aquatic humic substances J. Environ. Qual. 2010, 39, 1416.
Order of functionality loss during photodegradation of aquatic humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslGlsLk%3D&md5=4eaeb63f3512274221e7fdfddb0070e5CAS |

[35]  R. Smernik, J. A. Baldock, J. M. Oades, Impact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred wood Solid State Nucl. Magn. Reson. 2002, 22, 71.
Impact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred woodCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFCltLk%3D&md5=6f9b162053b63f8ab21d818136b62d71CAS |

[36]  K. Lorenz, C. M. Pretone, Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance J. Environ. Qual. 2002, 31, 431.
Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonanceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCgsb0%3D&md5=dcd54a5bddaa5d884f844f4bdca29a65CAS |

[37]  J. Mao, R. M. Cory, D. M. McKnight, K. Schmidt-Rohr, Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR Org. Geochem. 2007, 38, 1277.
Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMRCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Crs7Y%3D&md5=70c0451811088b9817a1d1e61cd1fbc9CAS |

[38]  T. Abe, A. Watanabe, X-ray photoelectron spectroscopy of nitrogen functional groups in soil humic acids Soil Sci. 2004, 169, 35.
X-ray photoelectron spectroscopy of nitrogen functional groups in soil humic acidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvF2gsQ%3D%3D&md5=8f7ed60ace5cb9bdf1ae73597d613823CAS |

[39]  X. Fang, J. Mao, R. M. Cory, D. M. McKnight, K. Schmidt-Rohr, 15N and 13C{14N} NMR investigation of the major nitrogen-containing segment in an aquatic fulvic acid: evidence for a hydantoin derivative Magn. Reson. Chem. 2011, 49, 775.
15N and 13C{14N} NMR investigation of the major nitrogen-containing segment in an aquatic fulvic acid: evidence for a hydantoin derivativeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1WjsrvE&md5=af1a5a9a74fdd1cd11ba4d611a2f3bcbCAS |

[40]  K. Xia, U. L. Skyllberg, W. F. Bleam, P. R. Bloom, E. A. Nater, P. A. Helmke, X-ray absorption spectroscopic evidence for the complexation of Hg (II) by reduced sulfur in soil humic substances Environ. Sci. Technol. 1999, 33, 257.
X-ray absorption spectroscopic evidence for the complexation of Hg (II) by reduced sulfur in soil humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ylsLk%3D&md5=e0c204536f80ce3ba8d2f15b7464dcb3CAS |

[41]  K. Xia, F. Weesner, W. F. Bleam, P. R. Bloom, U. L. Skyllberg, P. A. Helmke, XANES studies of oxidation states of sulfur in aquatic and soil humic substances Soil Sci. Soc. Am. J. 1998, 62, 1240.
XANES studies of oxidation states of sulfur in aquatic and soil humic substancesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOqt7c%3D&md5=f3613b5dbf62e067b773e955c3add2feCAS |

[42]  H. Bubert, J. Lambert, P. Burba, Structural and elemental investigations of isolated aquatic humic substances using X-ray photoelectron spectroscopy Fresenius J. Anal. Chem. 2000, 368, 274.
Structural and elemental investigations of isolated aquatic humic substances using X-ray photoelectron spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFGmur8%3D&md5=db3b6e34dbf92d3cf954cea7d0808a4aCAS |

[43]  D. N. Hendrickson, J. M. Hollander, W. L. Jolly, Nitrogen 1s electron binding energies. Correlations with molecular orbital calculated nitrogen charges Inorg. Chem. 1969, 8, 2642.
Nitrogen 1s electron binding energies. Correlations with molecular orbital calculated nitrogen chargesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhsFyrug%3D%3D&md5=b7c5a3e981fdb4139b058751d5ed0427CAS |

[44]  J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis Carbon 1995, 33, 1641.
Evolution of nitrogen functionalities in carbonaceous materials during pyrolysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslaqu7w%3D&md5=1700555b1620b55c79175016d7e0927bCAS |

[45]  A. Wilhelms, R. L. Patience, S. R. Larter, S. Jorgensen, Nitrogen functionality distributions in asphaltenes isolated from several oils from different source rock types Geochim. Cosmochim. Acta 1992, 56, 3745.
Nitrogen functionality distributions in asphaltenes isolated from several oils from different source rock typesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlKrsrc%3D&md5=8568f8ae3a83793dfe8c8533b1c9910cCAS |

[46]  R. L. Patience, M. Baxby, K. D. Bartle, D. L. Perry, A. G. W. Rees, S. J. Rowland, The functionality of organic nitrogen in some recent sediments from the Peru upwelling region Org. Geochem. 1992, 18, 161.
The functionality of organic nitrogen in some recent sediments from the Peru upwelling regionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFCjsb4%3D&md5=448cbcb606aa33c44a32018472c8dc7fCAS |

[47]  S. R. Kelemen, M. Afeworki, M. L. Gorbaty, P. J. Kwiatek, M. S. Solum, J. Z. Hu, R. J. Pugmire, XPS and 15N NMR study of nitrogen forms in carbonaceous solids Energy Fuels 2002, 16, 1507.
XPS and 15N NMR study of nitrogen forms in carbonaceous solidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVKntbc%3D&md5=51155ccec0ed0e47b0ce490d51f6db19CAS |

[48]  M. Matsuoka, S. Isotani, R. D. Mansano, W. Sucasaire, R. A. C. Pinto, J. C. R. Mittani, K. Ogata, N. Kuratani, X-Ray photoelectron spectroscopy and Raman spectroscopy studies on thin carbon nitride films deposited by reactive RF magnetron sputtering World J. Nano Sci. Eng. 2012, 2, 92.
X-Ray photoelectron spectroscopy and Raman spectroscopy studies on thin carbon nitride films deposited by reactive RF magnetron sputteringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFertLjI&md5=5bc18db0404dfdc49d1a6c35ba90b483CAS |

[49]  R. J. J. Jansen, H. Van Bekkum, XPS of nitrogen-containing functional groups on activated carbon Carbon 1995, 33, 1021.
XPS of nitrogen-containing functional groups on activated carbonCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFans70%3D&md5=31e4540d77368621e4511acbc06b1d03CAS |

[50]  C. Papageorgiou, S. Fischer, J. Reichert, K. Diller, F. Blobner, F. Klappenberger, F. Allegretti, A. P. Seitsonen, J. V. Barth, Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces ACS Nano 2012, 6, 2477.
Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfacesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislSktbk%3D&md5=91d0fb05c68636ee665f3d195d6cfd25CAS |

[51]  P. Burchill, L. S. Welch, Variation of nitrogen content and functionality with rank for some UK bituminous coals Fuel 1989, 68, 100.
Variation of nitrogen content and functionality with rank for some UK bituminous coalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXnvV2ktQ%3D%3D&md5=32805b1cb5b5cc4fd4714152a5b5ab76CAS |

[52]  N. Graf, E. Yegen, T. Gross, A. Lippitz, W. Weigel, S. Krakert, A. Terfort, W. E. S. Unger, XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces Surf. Sci. 2009, 603, 2849.
XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfacesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ju7zO&md5=7b0e2c79fc2f5ec4822909b26220b163CAS |

[53]  P. A. Gerin, M. J. Genet, A. J. Herbillon, B. Delvaux, Surface analysis of soil material by X-ray photoelectron spectroscopy Eur. J. Soil Sci. 2003, 54, 589.
Surface analysis of soil material by X-ray photoelectron spectroscopyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVOjtb0%3D&md5=cb1132b27154bec22f931147193419faCAS |

[54]  G. M. King, Distribution and Metabolism of Quaternary Amines in Marine Sediment, in Nitrogen Cycling in Coastal Marine Environments (Eds T. H. Blackburn, J. Sorensen) 1988, pp. 143–173 (Wiley and Sons: Chichester).

[55]  K. E. Peters, C. C. Walters, J. M. Moldowan, The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History 2005 (Cambridge University Press: New York).

[56]  B. Allard, A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit Geoderma 2006, 130, 77.
A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite depositCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVKl&md5=fa78d91c56aebb2b6e7f1698521ef47fCAS |

[57]  J. Peuravuori, K. Pihlaja, Advanced TMAH and TMAAc thermochemolysis–pyrolysis techniques for molecular characterization of size-separated fractions from aquatic dissolved organic matter Anal. Bioanal. Chem. 2007, 389, 475.
Advanced TMAH and TMAAc thermochemolysis–pyrolysis techniques for molecular characterization of size-separated fractions from aquatic dissolved organic matterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFSjtbw%3D&md5=25b22a807e0c73b34081598c39aa818bCAS |

[58]  J. W. de Leeuw, M. Baas, The behaviour of esters in the presence of tetramethylammonium salts at elevated temperatures, flash pyrolysis or flash chemolysis J. Anal. Appl. Pyrolysis 1993, 26, 175.
The behaviour of esters in the presence of tetramethylammonium salts at elevated temperatures, flash pyrolysis or flash chemolysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Gluro%3D&md5=a9fa7a6f1e558f524b4773165f0f0912CAS |

[59]  N. Gallois, J. Templier, S. Derenne, Pyrolysis–gas chromatography–mass spectrometry of the 20 protein amino acids in the presence of TMAH J. Anal. Appl. Pyrolysis 2007, 80, 216.
Pyrolysis–gas chromatography–mass spectrometry of the 20 protein amino acids in the presence of TMAHCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVantrs%3D&md5=13710b63d927168c3737bef95c69d58aCAS |

[60]  F. J. Stevenson, Humus Chemistry, Genesis, Composition, Reactions, 2nd ed. 1994 (John Wiley and Sons: New York).

[61]  I. Tanczos, M. Schöflinger, H. Schmidt, J. Balla, Cannizzaro reaction of aldehydes in TMAH thermochemolysis J. Anal. Appl. Pyrolysis 1997, 42, 21.
Cannizzaro reaction of aldehydes in TMAH thermochemolysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVantLw%3D&md5=abe238f654116e9c64f4bc9b8aa3424eCAS |

[62]  C. Estournel-Pelardy, F. Delarue, L. Grasset, F. Laggoun-Défarge, A. Amblès, Tetramethylammonium hydroxide thermochemolysis for the analysis of cellulose and free carbohydrates in a peat bog J. Anal. Appl. Pyrolysis 2011, 92, 401.
Tetramethylammonium hydroxide thermochemolysis for the analysis of cellulose and free carbohydrates in a peat bogCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqt77M&md5=904b4e53c6d97560f32f74ba16aca547CAS |

[63]  C. Estournel-Pelardy, A. El-Mufleh Al Husseini, L. Doskočil, L. Grasset, A two-step thermochemolysis for soil organic matter analysis. Application to lipid-free organic fraction and humic substances from an ombrotrophic peatland J. Anal. Appl. Pyrolysis 2013, 104, 103.
A two-step thermochemolysis for soil organic matter analysis. Application to lipid-free organic fraction and humic substances from an ombrotrophic peatlandCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ekt77I&md5=42cb53fb6926f9869fcbd5c0f97985c0CAS |

[64]  M. S. Costa, A. Rego, V. Ramos, T. B. Afonso, S. Freitas, M. Preto, V. Lopes, V. Vasconcelos, C. Magalhães, P. N. Leão, The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria Sci. Rep. 2016, 6, 23436.
The conifer biomarkers dehydroabietic and abietic acids are widespread in CyanobacteriaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1Chsbo%3D&md5=133ac090dd3e74864cf359e817b041ecCAS |

[65]  L. J. Standley, B. R. Simoneit, Resin diterpenoids as tracers for biomass combustion aerosols J. Atmos. Chem. 1994, 18, 1.
Resin diterpenoids as tracers for biomass combustion aerosolsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFKgt7k%3D&md5=805e94245681b0d12811b231ccbc1b41CAS |

[66]  A. P. Deshmukh, B. Chefetz, P. G. Hatcher, Characterization of organic matter in pristine and contaminated coastal marine sediments using solid-state 13C NMR, pyrolytic and thermochemolytic methods: a case study in the San Diego harbor area Chemosphere 2001, 45, 1007.
Characterization of organic matter in pristine and contaminated coastal marine sediments using solid-state 13C NMR, pyrolytic and thermochemolytic methods: a case study in the San Diego harbor areaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVeht7o%3D&md5=49e08c7e438c2a028cbbbd88bc79c6a8CAS |

[67]  J. Chefetz, M. L. Salloum, A. P. Deshmukh, P. G. Hatcher, Structural components of humic acids as determined by chemical modifications and carbon 13 NMR, pyrolysis, and thermochemolysis-gas chromatography/mass spectrometry Soil Sci. Soc. Am. J. 2002, 66, 1159.
Structural components of humic acids as determined by chemical modifications and carbon 13 NMR, pyrolysis, and thermochemolysis-gas chromatography/mass spectrometryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOrsb0%3D&md5=d77f0b883173ee9f6ef61b03785264a6CAS |

[68]  H. Iwai, M. Fukushima, M. Yamamoto, T. Komai, Y. Kawabe, Characterization of seawater extractable organic matter from bark compost by TMAH–py–GC–MS J. Anal. Appl. Pyrolysis 2013, 99, 9.
Characterization of seawater extractable organic matter from bark compost by TMAH–py–GC–MSCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCkur3N&md5=20349b0abc1b9d106c9db3e5ba275c26CAS |

[69]  J. M. Challinor, Review: the development and applications of thermally assisted hydrolysis and methylation reactions J. Anal. Appl. Pyrolysis 2001, 61, 3.
Review: the development and applications of thermally assisted hydrolysis and methylation reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVKlur0%3D&md5=356246939f01774b0690db8a785fb4f1CAS |