Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The relationship between inner surface potential and electrokinetic potential from an experimental and theoretical point of view*

Tajana Preočanin A D , Danijel Namjesnik A , Matthew A. Brown B and Johannes Lützenkirchen C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.

B Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (Eidgenössische Technische Hochschule) Zürich, CH-8093 Zurich, Switzerland.

C Institut für Nukleare Entsorgung (INE), Karlsruher Institut für Technologie (KIT), Postfach 3640, 76021 Karlsruhe, Germany.

D Corresponding author. Email: tajana@chem.pmf.hr

Environmental Chemistry 14(5) 295-309 https://doi.org/10.1071/EN16216
Submitted: 28 December 2016  Accepted: 5 April 2017   Published: 3 May 2017

Environmental context. Interfacial properties of colloid and nanoparticles are directly related to the reactivity and surface densities of existing surface sites. Surface characterisation of particles provides only some kind of average surface properties. Analysis of well-defined monocrystal surfaces, which form the surface of the single particle, leads to a better understanding of surface reactions and mutual interactions of adjacent crystal planes on average surface properties.

Abstract. The contact of small solid particles and macroscopic flat planes with aqueous electrolyte solutions results in the accumulation of ions at the interface and the formation of the electrical interfacial layer. Analysis of well-defined monocrystal surfaces, which are the building blocks of a single particle, leads to a better understanding of surface reactions and mutual interactions of adjacent crystal planes on average surface properties of particles. We analyse inner surface potential (obtained by single-crystal electrode) and zeta-potential data (obtained by streaming potential measurements) that were obtained on identical samples. Among the systems for which comparable surface and zetapotentials are available, measured inner surface potential data for sapphire (0001), haematite (0001) and rutile (110) show the expected behaviour based on the face-specific surface chemistry model, whereas the slopes for rutile (110) and quartz (0001) do not. Isoelectric points for sapphire (0001), haematite (0001) and rutile (100) are in conflict with the standard model that implies consistent behaviour of surface potential and diffuse layer potential. For the two former systems, previous results from the literature suggest that the charge of interfacial water can explain the discrepancy. The water layer could also play a role for quartz (0001), but in this case, the discrepancy would simply not be noticed, because both point of zero potential and isoelectric point are low. Along with data on silver halides, it can be concluded that six-ring water structures on solids may generate the electrokinetic behaviour that is typical of inert surfaces like Teflon.

Additional keywords: electrical interfacial layer, haematite, interfacial water, quartz, rutile, sapphire, silica, single-crystal electrodes, streaming potential.


References

[1]  A. V. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1753.
Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2itrfK&md5=4e2ddc45245122fd465bc9e028d636d3CAS |

[2]  J. Lyklema, Fundamentals of Interface and Colloid Science. Volume 2: Solid–Liquid Interfaces, 1st edn 1995 (Academic Press: London).

[3]  G. A. Parks, P. L. Bruyn, The zero point of charge of oxides. J. Phys. Chem. 1962, 66, 967.
The zero point of charge of oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkt1Ojtro%3D&md5=94278c04378a882bc44400c5cbbfeebbCAS |

[4]  T. Hiemstra, W. H. Van Riemsdijk, G. H. Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach: I. Model description and evaluation of intrinsic reaction constants. J. Colloid Interface Sci. 1989, 133, 91.
Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach: I. Model description and evaluation of intrinsic reaction constants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmsVSqsrg%3D&md5=8e1b7dd231861ed528b67ea67b5dc882CAS |

[5]  T. Hiemstra, W. H. Van Riemsdijk, A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 1996, 179, 488.
A surface structural approach to ion adsorption: the charge distribution (CD) model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFOjur0%3D&md5=6b7c009283ffc6dd1ab51519d07bb5a4CAS |

[6]  T. Hiemstra, W. H. Van Riemsdijk, On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 2006, 301, 1.
On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Kks7w%3D&md5=63434091e68888be5c531641b58e7d5bCAS |

[7]  D. E. Yates, S. Levine, T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc., Faraday Trans. 1 1974, 70, 1807.
| 1:CAS:528:DyaE2MXmsVyjsQ%3D%3D&md5=8cab52d90edc63c2b1d4cfc5c7820726CAS |

[8]  W. Stumm, C. P. Huang, S. R. Jenkins, Specific chemical interaction affecting the stability of dispersed systems. Croat. Chem. Acta 1970, 42, 223.
| 1:CAS:528:DyaE3cXkvVSrtbo%3D&md5=c3a77f55f401ed51ff0521932fdaf9a7CAS |

[9]  W. Stumm, L. Sigg, B. Sulzberger, Chemistry of the Solid–Water Interface: Processes at the Mineral–Water and Particle–Water Interface in Natural Systems 1992 (John Wiley & Sons, Inc.: New York).

[10]  B. C. Garrett, Ions at the air/water interface. Science 2004, 303, 1146.
Ions at the air/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFaht70%3D&md5=43d7b8987b5035223510afb72baaef20CAS |

[11]  T. W. Healy, D. W. Fuerstenau, The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases. J. Colloid Interface Sci. 2007, 309, 183.
The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2jt7c%3D&md5=cf7adf247cde7febf2e5fe625102897dCAS |

[12]  H. Nakahara, O. Shibata, Y. Moroi, Examination of surface adsorption of sodium chloride and sodium dodecyl sulfate by surface potential measurement at the air/solution interface. Langmuir 2005, 21, 9020.
Examination of surface adsorption of sodium chloride and sodium dodecyl sulfate by surface potential measurement at the air/solution interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFWhu78%3D&md5=dcd668c50d1b933dcb52200dc815c92eCAS |

[13]  K. G. Marinova, R. G. Alargova, N. D. Denkov, O. D. Velev, D. N. Petsev, I. B. Ivanov, R. P. Borwankar, Charging of oil–water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir 1996, 12, 2045.
Charging of oil–water interfaces due to spontaneous adsorption of hydroxyl ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKgtbc%3D&md5=841d01c4b71aa9386f0344b8bcfb2a90CAS |

[14]  J. Lützenkirchen, T. Preočanin, N. Kallay, A macroscopic water structure based model for describing charging phenomena at inert hydrophobic surfaces in aqueous electrolyte solutions. Phys. Chem. Chem. Phys. 2008, 10, 4946.
A macroscopic water structure based model for describing charging phenomena at inert hydrophobic surfaces in aqueous electrolyte solutions.Crossref | GoogleScholarGoogle Scholar |

[15]  R. Vácha, F. Uhlig, P. Jungwirth, Charges at aqueous interfaces: development of computational approaches in direct contact with experiment, in Advances in Chemical Physics, Vol. 155 (Eds S. A. Rice, A. R. Dinner) 2014, pp. 69–95 (John Wiley & Sons, Inc.: Hoboken, NJ).

[16]  J. G. Catalano, Weak interfacial water ordering on isostructural hematite and corundum (001) surfaces. Geochim. Cosmochim. Acta 2011, 75, 2062.
Weak interfacial water ordering on isostructural hematite and corundum (001) surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGhu70%3D&md5=8ff57ea4ca3a7e540568fb820c9e9236CAS |

[17]  R. Zimmermann, U. Freudenberg, R. Schweiß, D. Küttner, C. Werner, Hydroxide and hydronium ion adsorption – A survey. Curr. Opin. Colloid Interface Sci. 2010, 15, 196.
Hydroxide and hydronium ion adsorption – A survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKntbo%3D&md5=6dc8ad363d217bbe66d076d46f62db6cCAS |

[18]  N. Kallay, T. Preočanin, F. Šupljika, Measurement of surface potential at silver chloride aqueous interface with single-crystal AgCl electrode. J. Colloid Interface Sci. 2008, 327, 384.
Measurement of surface potential at silver chloride aqueous interface with single-crystal AgCl electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aqsrvK&md5=c375416fd1ccb519278c993d0a39f4eaCAS |

[19]  T. Preočanin, F. Šupljika, N. Kallay, Evaluation of interfacial equilibrium constants from surface potential data: silver chloride aqueous interface. J. Colloid Interface Sci. 2009, 337, 501.
Evaluation of interfacial equilibrium constants from surface potential data: silver chloride aqueous interface.Crossref | GoogleScholarGoogle Scholar |

[20]  T. Preočanin, F. Šupljika, N. Kallay, Charging of silver bromide aqueous interface: evaluation of interfacial equilibrium constants from surface potential data. J. Colloid Interface Sci. 2010, 346, 222.
Charging of silver bromide aqueous interface: evaluation of interfacial equilibrium constants from surface potential data.Crossref | GoogleScholarGoogle Scholar |

[21]  T. Preočanin, F. Šupljika, N. Kallay, Charging of silver bromide aqueous interface: evaluation of enthalpy and entropy of interfacial reactions from surface potential data. J. Colloid Interface Sci. 2011, 354, 318.
Charging of silver bromide aqueous interface: evaluation of enthalpy and entropy of interfacial reactions from surface potential data.Crossref | GoogleScholarGoogle Scholar |

[22]  M. Kolář, H. Měšt’ánková, J. Jirkovský, M. Heyrovský, J. Šubrt, Some aspects of physico-chemical properties of TiO2 nanocolloids with respect to their age, size, and structure. Langmuir 2006, 22, 598.
Some aspects of physico-chemical properties of TiO2 nanocolloids with respect to their age, size, and structure.Crossref | GoogleScholarGoogle Scholar |

[23]  M. Předota, M. L. Machesky, D. J. Wesolowski, Molecular origins of the zeta potential. Langmuir 2016, 32, 10189.
Molecular origins of the zeta potential.Crossref | GoogleScholarGoogle Scholar |

[24]  J. F. Schenck, A transistor method for measuring changes in double layer potentials. J. Colloid Interface Sci. 1977, 61, 569.
A transistor method for measuring changes in double layer potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlt1Khsro%3D&md5=cf6cb88309a3716e57d7cbc8a3f5caa2CAS |

[25]  C. Cichos, T. Geidel, Contribution to direct measurement of double-layer potential at the oxide/electrolyte interface. Colloid Polym. Sci. 1983, 261, 947.
Contribution to direct measurement of double-layer potential at the oxide/electrolyte interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsVCjsQ%3D%3D&md5=6a44d85e111dec5a7371a85667b0123dCAS |

[26]  L. Bousse, N. F. De Rooij, P. Bergveld, The influence of counter-ion adsorption on the ψ0/pH characteristics of insulator surfaces. Surf. Sci. 1983, 135, 479.
The influence of counter-ion adsorption on the ψ0/pH characteristics of insulator surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXnsVGqsQ%3D%3D&md5=31fd39a4eff7bcb55e31551c57d8fc29CAS |

[27]  W. M. Siu, R. S. C. Cobbold, Basic properties of the electrolyte–SiO2–Si system: physical and theoretical aspects. IEEE Trans. Electron Dev. 1979, 26, 1805.
Basic properties of the electrolyte–SiO2–Si system: physical and theoretical aspects.Crossref | GoogleScholarGoogle Scholar |

[28]  R. E. G. van Hal, J. C. T. Eijkel, P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 1996, 69, 31.
A general model to describe the electrostatic potential at electrolyte oxide interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXovV2kug%3D%3D&md5=5f0a7f608b5bdb2c70d62aa414f4173eCAS |

[29]  P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, BME-17, 70.
Development of an ion-sensitive solid-state device for neurophysiological measurements.Crossref | GoogleScholarGoogle Scholar |

[30]  J.-C. Chou, L. P. Liao, Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method. Thin Solid Films 2005, 476, 157.
Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs12hsr0%3D&md5=fa110dbe76098278010e6711bb0ad842CAS |

[31]  B. Lubbers, A. Schober, Comparing the ISFET to the glass electrode: advantages, challenges and similarities. Chem. Analityczna 2009, 54, 1121.

[32]  N. Kallay, D. Čakara, Reversible charging of the ice–water interface: I. Measurement of the surface potential. J. Colloid Interface Sci. 2000, 232, 81.
Reversible charging of the ice–water interface: I. Measurement of the surface potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVelur4%3D&md5=25679b652efc77df716033fc273689d8CAS |

[33]  N. Kallay, A. Čop, E. Chibowski, L. Holysz, Reversible charging of the ice–water interface: II. Estimation of equilibrium parameters. J. Colloid Interface Sci. 2003, 259, 89.
Reversible charging of the ice–water interface: II. Estimation of equilibrium parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVGitrk%3D&md5=5da93465922f73e93717a245baf374f0CAS |

[34]  N. Kallay, Z. Dojnović, A. Čop, Surface potential at the hematite–water interface. J. Colloid Interface Sci. 2005, 286, 610.
Surface potential at the hematite–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFCqsbY%3D&md5=9df5aa13990ae0200e71309cb18732b4CAS |

[35]  N. Kallay, T. Preočanin, T. Ivšić, Determination of surface potentials from the electrode potentials of a single-crystal electrode. J. Colloid Interface Sci. 2007, 309, 21.
Determination of surface potentials from the electrode potentials of a single-crystal electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2jtL4%3D&md5=c8c42e1f117a7051e69f720245489a59CAS |

[36]  T. Preočanin, A. Čop, N. Kallay, Surface potential of hematite in aqueous electrolyte solution: hysteresis and equilibration at the interface. J. Colloid Interface Sci. 2006, 299, 772.
Surface potential of hematite in aqueous electrolyte solution: hysteresis and equilibration at the interface.Crossref | GoogleScholarGoogle Scholar |

[37]  T. Preočanin, W. Janusz, N. Kallay, Evaluation of equilibrium parameters of the anatase/aqueous electrolyte solution interface by introducing surface potential data. Colloids Surf. A Physicochem. Eng. Asp. 2007, 297, 30.
Evaluation of equilibrium parameters of the anatase/aqueous electrolyte solution interface by introducing surface potential data.Crossref | GoogleScholarGoogle Scholar |

[38]  T. Preočanin, M. Tuksar, N. Kallay, Mechanism of charging of the pyrite/aqueous interface as deduced from the surface potential measurements. Appl. Surf. Sci. 2007, 253, 5797.
Mechanism of charging of the pyrite/aqueous interface as deduced from the surface potential measurements.Crossref | GoogleScholarGoogle Scholar |

[39]  N. Kallay, T. Preočanin, J. Marković, D. Kovačević, Adsorption of organic acids on metal oxides: application of the surface potential measurements. Colloids Surf. A Physicochem. Eng. Asp. 2007, 306, 40.
Adsorption of organic acids on metal oxides: application of the surface potential measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFertr8%3D&md5=ffd31b92e96053a0811a4112b98c27b0CAS |

[40]  D. Kovačević, D. Mazur, T. Preočanin, N. Kallay, Electrical interfacial layer at TiO2/poly(4-styrene sulfonate) aqueous interface. Adsorption 2010, 16, 405.
Electrical interfacial layer at TiO2/poly(4-styrene sulfonate) aqueous interface.Crossref | GoogleScholarGoogle Scholar |

[41]  N. Kallay, T. Preočanin, Measurement of the surface potential of individual crystal planes of hematite. J. Colloid Interface Sci. 2008, 318, 290.
Measurement of the surface potential of individual crystal planes of hematite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFagug%3D%3D&md5=ba3d16e76d6e1adc79af40e55d57fa7dCAS |

[42]  K. Shimizu, J.-F. Boily, Electrochemical signatures of crystallographic orientation and counterion binding at the hematite/water interface. J. Phys. Chem. C 2015, 119, 5988.
Electrochemical signatures of crystallographic orientation and counterion binding at the hematite/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFCit7g%3D&md5=5b23d9a81f199ee1ced9c30f6f7e2577CAS |

[43]  K. Shimizu, J. Nystrom, P. Geladi, B. Lindholm-Sethson, J.-F. Boily, Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis. Phys. Chem. Chem. Phys. 2015, 17, 11560.
Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFeqsL8%3D&md5=ff2cf465925c77a46bcb5fe2bc993afeCAS |

[44]  J.-F. Boily, S. Chatman, K. M. Rosso, Inner-Helmholtz potential development at the hematite (α-Fe2O3) (001) surface. Geochim. Cosmochim. Acta 2011, 75, 4113.
Inner-Helmholtz potential development at the hematite (α-Fe2O3) (001) surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotleksLw%3D&md5=acfdb59ebd2738ed82e05f0c7e4ff57dCAS |

[45]  K. Shimizu, A. Lasia, J.-F. Boily, Electrochemical impedance study of the hematite/water interface. Langmuir 2012, 28, 7914.
Electrochemical impedance study of the hematite/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ektLY%3D&md5=e08971051dea16b2ed5e00d15ad87fd3CAS |

[46]  S. V. Yanina, K. M. Rosso, Linked reactivity at mineral–water interfaces through bulk crystal conduction. Science 2008, 320, 218.
Linked reactivity at mineral–water interfaces through bulk crystal conduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlGjtLw%3D&md5=11cf644b8dcca5f723f1f60bcfdfafaeCAS |

[47]  S. Chatman, P. Zarzycki, K. M. Rosso, Surface potentials of (001), (012), (113) hematite (α-Fe2O3) crystal faces in aqueous solution. Phys. Chem. Chem. Phys. 2013, 15, 13911.
Surface potentials of (001), (012), (113) hematite (α-Fe2O3) crystal faces in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2itrjL&md5=f451ee845ba9e73aaade3059f3ed5e66CAS |

[48]  S. Chatman, P. Zarzycki, K. M. Rosso, Spontaneous water oxidation at hematite (α-Fe2O3) crystal faces. ACS Appl. Mater. Interfaces 2015, 7, 1550.
Spontaneous water oxidation at hematite (α-Fe2O3) crystal faces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehsL3M&md5=174f73817447d80a91ceb19d69a5cf97CAS |

[49]  N. Kallay, T. Preočanin, M. Sapunar, D. Namjesnik, Common surface potential of two different crystal planes. Surf. Innovations 2014, 2, 142.
Common surface potential of two different crystal planes.Crossref | GoogleScholarGoogle Scholar |

[50]  J. Lützenkirchen, F. Heberling, F. Supljika, T. Preocanin, N. Kallay, F. Johann, L. Weisser, P. J. Eng, Structure–charge relationship – the case of hematite (001). Faraday Discuss. 2015, 180, 55.
Structure–charge relationship – the case of hematite (001).Crossref | GoogleScholarGoogle Scholar |

[51]  M. Lucas, J.-F. Boily, Mapping electrochemical heterogeneity at iron oxide surfaces: a local electrochemical impedance study. Langmuir 2015, 31, 13618.
Mapping electrochemical heterogeneity at iron oxide surfaces: a local electrochemical impedance study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFersLjL&md5=180ac341bdc8c83b9da820d5b32bb477CAS |

[52]  M. A. Brown, Z. Abbas, A. Kleibert, R. G. Green, A. Goel, S. May, T. M. Squirres, Determination of surface potential and electrical double-layer structure at the aqueous electrolyte–nanoparticle interface. Phys. Rev. X 2016, 6, 11007.
Determination of surface potential and electrical double-layer structure at the aqueous electrolyte–nanoparticle interface.Crossref | GoogleScholarGoogle Scholar |

[53]  M. A. Brown, A. Goel, Z. Abbas, Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 2016, 55, 3790.
Effect of electrolyte concentration on the stern layer thickness at a charged interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisV2gsLw%3D&md5=3f4448b12cdd468be9a1790bbf2308ecCAS |

[54]  M. A. Brown, A. Beloqui Redondo, M. Sterrer, B. Winter, G. Pacchioni, Z. Abbas, J. A. van Bokhoven, Measure of surface potential at the aqueous–oxide nanoparticle interface by XPS from a liquid microjet. Nano Lett. 2013, 13, 5403.
Measure of surface potential at the aqueous–oxide nanoparticle interface by XPS from a liquid microjet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Wltb%2FK&md5=6d3ca25d2c6881a17eb7063ccdb5d453CAS |

[55]  J. F. Danielli, K. G. A. Pankhurst, A. C. Riddiford (Eds), Recent Progress in Surface Science 1964 (Academic Press: New York).

[56]  R. O. James, G. A. Parks, Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties, in Surface and Colloid Science, Vol. 12 (Ed. E. Matijević) 1982, pp. 119–216. (Plenum Press: New York).

[57]  I. Mills, T. Cvitaš, K. Homann, N. Kallay, K. Kuchitsu, Quantities, Units and Symbols in Physical Chemistry, 2nd edn 1993 (Blackwell: Oxford, UK).

[58]  X. Yin, J. Drelich, Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions. Langmuir 2008, 24, 8013.
Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVejsrk%3D&md5=a1e435bae77d1c7e1b93e8fe21d70968CAS |

[59]  A. S. Dukhin, P. J. Goetz, Ultrasound for Characterizing Colloids: Particle Sizing, Zeta Potential, Rheology 2002 (Elsevier: Amsterdam).

[60]  J. A. Davis, R. O. James, J. O. Leckie, Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 1978, 63, 480.
Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFWjtL8%3D&md5=576e66ad9ccd94c7e65fd87a1190b1a2CAS |

[61]  W. H. Van Riemsdijk, G. H. Bolt, L. K. Koopal, J. Blaakmeer, Electrolyte adsorption on heterogeneous surfaces: adsorption models. J. Colloid Interface Sci. 1986, 109, 219.
Electrolyte adsorption on heterogeneous surfaces: adsorption models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVCmsA%3D%3D&md5=bb27dc1ab13ae86316a8eb95bd5e34e2CAS |

[62]  I. D. Brown, Recent developments in the methods and applications of the bond valence model. Chem. Rev. 2009, 109, 6858.
Recent developments in the methods and applications of the bond valence model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2mtbfI&md5=c1f9280b60722a47d1af3d0c366e39bfCAS |

[63]  S. Trasatti, Crystal face specificity of double layer structure and electrocatalysis. Mater. Chem. Phys. 1985, 12, 507.
Crystal face specificity of double layer structure and electrocatalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkt12ju7g%3D&md5=57bc7535c1c6a07070b8ac1b8fcf25cfCAS |

[64]  D. Li, M. H. Nielsen, J. R. I. Lee, C. Frandsen, J. F. Banfield, J. J. De Yoreo, Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014.
| 1:CAS:528:DC%2BC38Xnt1Kgt7o%3D&md5=4a24111ce152f31ca47b86821935f766CAS |

[65]  J. Lützenkirchen, Specific ion effects at two single-crystal planes of sapphire. Langmuir 2013, 29, 7726.
Specific ion effects at two single-crystal planes of sapphire.Crossref | GoogleScholarGoogle Scholar |

[66]  T. Rabung, D. Schild, H. Geckeis, R. Klenze, T. Fanghänel, Cm(III) sorption onto sapphire (α-Al2O3) single crystals. J. Phys. Chem. B 2004, 108, 17160.
Cm(III) sorption onto sapphire (α-Al2O3) single crystals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlSis78%3D&md5=3bc32657439b7f603bdf008854a01315CAS |

[67]  C. Bara, L. Plais, K. Larmier, E. Devers, M. Digne, A.-F. Lamic-Humblot, G. D. Pirngruber, X. Carrier, Aqueous-phase preparation of model HDS catalysts on planar alumina substrates: support effect on Mo adsorption and sulfidation. J. Am. Chem. Soc. 2015, 137, 15915.
Aqueous-phase preparation of model HDS catalysts on planar alumina substrates: support effect on Mo adsorption and sulfidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOrtrzO&md5=eae9e9d2e77dd4977a3c986ec9b64dedCAS |

[68]  A. Tougerti, I. Llorens, F. D’Acapito, E. Fonda, J.-L. Hazemann, Y. Joly, D. Thiaudiere, M. Che, X. Carrier, Surface science approach to the solid–liquid interface: surface-dependent precipitation of Ni(OH)2 on α-Al2O3 surfaces. Angew. Chem. Int. Ed. 2012, 51, 7697.
Surface science approach to the solid–liquid interface: surface-dependent precipitation of Ni(OH)2 on α-Al2O3 surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFaqu7s%3D&md5=3f301729eec53c414c989b311671ce51CAS |

[69]  S. V. Shevkunov, Formation of the transition layer at the vapor–crystal interface. Dokl. Phys. 2005, 50, 234.
Formation of the transition layer at the vapor–crystal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlyht7g%3D&md5=a65ed976f563df76dae84abf730208c1CAS |

[70]  J. P. Fitts, M. L. Machesky, D. J. Wesolowski, X. Shang, J. D. Kubicki, G. W. Flynn, T. F. Heinz, K. B. Eisenthal, Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2 (110) interface. Chem. Phys. Lett. 2005, 411, 399.
Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2 (110) interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1Orurs%3D&md5=7c51c45dbf2d3818e22fa98ff02796e7CAS |

[71]  M. L. Machesky, M. Předota, D. J. Wesolowski, L. Vlcek, P. T. Cummings, J. Rosenqvist, M. K. Ridley, J. D. Kubicki, A. V. Bandura, N. Kumar, J. O. Sofo, Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework. Langmuir 2008, 24, 12331.
Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ahs7rO&md5=6bfa9e268897abe193413f705d4576baCAS |

[72]  Z. Zhang, P. Fenter, L. Cheng, N. C. Sturchio, M. J. Bedzyk, M. Předota, A. Bandura, J. D. Kubicki, S. N. Lvov, P. T. Cummings, A. A. Chialvo, M. K. Ridley, P. Bénézeth, L. Anovitz, D. A. Palmer, M. L. Machesky, D. J. Wesolowski, Ion adsorption at the rutile–water interface: linking molecular and macroscopic properties. Langmuir 2004, 20, 4954.
Ion adsorption at the rutile–water interface: linking molecular and macroscopic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs12msb4%3D&md5=383fd363728690f556f8dc78fb260be7CAS |

[73]  P. W. Schindler, W. Stumm, The surface chemistry of oxides, hydroxides and oxide minerals, in Aquatic Surface Chemistry: Chemical Processes at the Particle–Water Interface (Ed. W. Stumm) 1987, pp. 83–110 (Wiley: New York).

[74]  A. G. F. de Beer, R. K. Campen, S. Roke, Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys. Rev. B 2010, 82, 235431.
Separating surface structure and surface charge with second-harmonic and sum-frequency scattering.Crossref | GoogleScholarGoogle Scholar |

[75]  C. Werner, H. Körber, R. Zimmermann, S. Dukhin, H.-J. Jacobasch, Extended electrokinetic characterization of flat solid surfaces. J. Colloid Interface Sci. 1998, 208, 329.
Extended electrokinetic characterization of flat solid surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFamt7c%3D&md5=0a8057a19ab61ba75c558c1bc056c4e8CAS |

[76]  P. J. Scales, F. Grieser, T. W. Healy, L. R. White, D. Y. C. Chan, Electrokinetics of the silica–solution interface: a flat plate streaming potential study. Langmuir 1992, 8, 965.
Electrokinetics of the silica–solution interface: a flat plate streaming potential study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtlKqs7o%3D&md5=eb8df1a7ff3ee7afd7a36aadb60fa53fCAS |

[77]  T. Hiemstra, Variable charge and electrical double layer of mineral–water interfaces: silver halides versus metal (hydr)oxides. Langmuir 2012, 28, 15614.
Variable charge and electrical double layer of mineral–water interfaces: silver halides versus metal (hydr)oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyks7nM&md5=169cc12afcbfc6d7fd05731bed6ca1c2CAS |

[78]  G. Sposito, On points of zero charge. Environ. Sci. Technol. 1998, 32, 2815.
On points of zero charge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFejs70%3D&md5=74fe95426f3e156fe159709fc81bb79aCAS |

[79]  R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications 1981 (Academic Press: London).

[80]  M. A. F. Pyman, J. W. Bowden, A. M. Posner, The movement of titration curves in the presence of specific adsorption. Soil Res. 1979, 17, 191.
The movement of titration curves in the presence of specific adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXks1eiu7s%3D&md5=3fec4541b8452470cd0fcf9344451abdCAS |

[81]  J. W. Bullard, M. J. Cima, Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. Langmuir 2006, 22, 10264.
Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WksLbF&md5=e34a1999e24aeea3fc4d63eaa94891e9CAS |

[82]  J. Sonnefeld, An analytic expression for the particle size dependence of the surface acidity of colloidal silica. J. Colloid Interface Sci. 1993, 155, 191.
An analytic expression for the particle size dependence of the surface acidity of colloidal silica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFSntL0%3D&md5=5330b45f2deecdce464ac2a9e13d577bCAS |

[83]  J. Yamanaka, S. Hibi, S. Ikeda, M. Yonese, Particle size dependence for effective charge density of ionic colloids. Mol. Simul. 2004, 30, 149.
Particle size dependence for effective charge density of ionic colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWlsLY%3D&md5=f106baf76f06e63241db634a5aed42deCAS |

[84]  V. H. Grassian, When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 2008, 112, 18303.
When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlant7fF&md5=25029789a04e3783119ac3d19ec9848dCAS |

[85]  J. P. Holmberg, E. Ahlberg, J. Bergenholtz, M. Hassellöv, Z. Abbas, Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations. J. Colloid Interface Sci. 2013, 407, 168.
Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSgs7%2FE&md5=35a7b7947675613ec3eb69e8feb641f0CAS |

[86]  T. Preočanin, N. Kallay, Evaluation of surface potential from single crystal electrode potential. Adsorption 2013, 19, 259.
Evaluation of surface potential from single crystal electrode potential.Crossref | GoogleScholarGoogle Scholar |

[87]  C. Eggleston, G. Jordan, A new approach to pH of point of zero charge measurement: crystal-face specificity by scanning force microscopy (SFM). Geochim. Cosmochim. Acta 1998, 62, 1919.
A new approach to pH of point of zero charge measurement: crystal-face specificity by scanning force microscopy (SFM).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFCktrs%3D&md5=706a1a2e68ec2111153049e432a53ee8CAS |

[88]  P. Zarzycki, S. Chatman, T. Preočanin, K. M. Rosso, Electrostatic potential of specific mineral faces. Langmuir 2011, 27, 7986.
Electrostatic potential of specific mineral faces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Gmtbs%3D&md5=d4cbc73c7114b2ec7107814b21424c94CAS |

[89]  P. Zarzycki, T. Preočanin, Point of zero potential of single-crystal electrode/inert electrolyte interface. J. Colloid Interface Sci. 2012, 370, 139.
Point of zero potential of single-crystal electrode/inert electrolyte interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsleqsL4%3D&md5=f8ad6083242d484df77b35f484eac7dfCAS |

[90]  N. Kallay, T. Preočanin, D. Kovačević, J. Lutzenkirchen, E. Chibowski, Electrostatic potentials at solid/liquid interfaces. Croat. Chem. Acta 2010, 83, 357.
| 1:CAS:528:DC%2BC3cXhs1art7%2FI&md5=54453512de28c97e5132fc044571ccafCAS |

[91]  J. Lützenkirchen, T. Preočanin, F. Stipić, F. Heberling, J. Rosenqvist, N. Kallay, Surface potential at the hematite (001) crystal plane in aqueous environments and the effects of prolonged aging in water. Geochim. Cosmochim. Acta 2013, 120, 479.
Surface potential at the hematite (001) crystal plane in aqueous environments and the effects of prolonged aging in water.Crossref | GoogleScholarGoogle Scholar |

[92]  L. K. Koopal, S. S. Dukhin, Modelling of the double layer and electrosorption of a patchwise heterogeneous surface on the basis of its homogeneous analogue 1. Non-interacting patches. Colloids Surf. A Physicochem. Eng. Asp. 1993, 73, 201.
Modelling of the double layer and electrosorption of a patchwise heterogeneous surface on the basis of its homogeneous analogue 1. Non-interacting patches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1Wrtg%3D%3D&md5=5ddd9ff826fa69c16208cf0b051f2080CAS |

[93]  A. W. M. Gibb, L. K. Koopal, Electrochemistry of a model for patchwise heterogeneous surfaces: the rutile-hematite system. J. Colloid Interface Sci. 1990, 134, 122.
Electrochemistry of a model for patchwise heterogeneous surfaces: the rutile-hematite system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlCjtQ%3D%3D&md5=1fd76ebfb30c3531e48c28d408a6cc97CAS |

[94]  J. Lützenkirchen, P. Behra, A new approach for modelling potential effects in cation adsorption onto binary (hydr)oxides. J. Contam. Hydrol. 1997, 26, 257.
A new approach for modelling potential effects in cation adsorption onto binary (hydr)oxides.Crossref | GoogleScholarGoogle Scholar |

[95]  N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 1995, 99, 16646.
Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGhtLw%3D&md5=2fb000230d65d9beb2c07f69ddcb5ff3CAS |

[96]  Z. Abbas, C. Labbez, S. Nordholm, E. Ahlberg, Size-dependent surface charging of nanoparticles. J. Phys. Chem. C 2008, 112, 5715.
Size-dependent surface charging of nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsF2rs7w%3D&md5=9790031a60d977944b69155bc1f419ddCAS |

[97]  M. A. Brown, N. Duyckaerts, A. B. Redondo, I. Jordan, F. Nolting, A. Kleibert, M. Ammann, H. J. Wörner, J. A. van Bokhoven, Z. Abbas, Effect of surface charge density on the affinity of oxide nanoparticles for the vapor–water interface. Langmuir 2013, 29, 5023.
Effect of surface charge density on the affinity of oxide nanoparticles for the vapor–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslWlsL8%3D&md5=afc50b962af9bc078e8ae51b3886c3e9CAS |

[98]  Q.-L. Zhang, L.-C. Du, Y.-X. Weng, L. Wang, H.-Y. Chen, J.-Q. Li, Particle-size-dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes. J. Phys. Chem. B 2004, 108, 15077.
Particle-size-dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: insights into the surface modification of nanostructured TiO2 electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt12gtLw%3D&md5=e775d96d2d63b381cafb67e028330cdaCAS |

[99]  M. Kosmulski, Surface Charging and Points of Zero Charge 2009 (CRC Press: Boca Raton, FL).

[100]  T. Hiemstra, W. H. Van Riemsdijk, A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochim. Cosmochim. Acta 2009, 73, 4423.
A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKksb8%3D&md5=20d7e5dfebd853f81812e92e99258177CAS |

[101]  A. J. Hopkins, C. L. McFearin, G. L. Richmond, Investigations of the solid–aqueous interface with vibrational sum-frequency spectroscopy. Curr. Opin. Solid State Mater. Sci. 2005, 9, 19.
Investigations of the solid–aqueous interface with vibrational sum-frequency spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFejsbw%3D&md5=5d9f991b11de44da5ff429fbf815c08fCAS |

[102]  M. Kosmulski, Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interface Sci. 2016, 238, 1.
Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFegu7vP&md5=f285441c78c8cb207ba7216eb1a08e46CAS |

[103]  W. H. Zachariasen, H. A. Plettinger, Extinction in quartz. Acta Crystallogr. 1965, 18, 710.
Extinction in quartz.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXntVGlsQ%3D%3D&md5=4ecdd5460c7774d2039719d9af127516CAS |

[104]  J. Lützenkirchen, R. Zimmermann, T. Preočanin, A. Filby, T. Kupcik, D. Küttner, A. Abdelmonem, D. Schild, T. Rabung, M. Plaschke, F. Brandenstein, C. Werner, H. Geckeis, An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv. Colloid Interface Sci. 2010, 157, 61.
An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface.Crossref | GoogleScholarGoogle Scholar |

[105]  D. Yang, M. Krasowska, R. Sedev, J. Ralston, The unusual surface chemistry of α-Al2O3 (0001). Phys. Chem. Chem. Phys. 2010, 12, 13724.
The unusual surface chemistry of α-Al2O3 (0001).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yktbbF&md5=05d2990ad13822a486a054003003d9acCAS |

[106]  A. Selmani, J. Lutzenkirchen, N. Kallay, T. Preočanin, Surface and zeta potentials of silver halide single crystals: pH-dependence in comparison to particle systems. J. Phys. Condens. Matter 2014, 26, 244104.
Surface and zeta potentials of silver halide single crystals: pH-dependence in comparison to particle systems.Crossref | GoogleScholarGoogle Scholar |

[107]  D. Rothenstein, B. Claasen, B. Omiecienski, P. Lammel, J. Bill, Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy. J. Am. Chem. Soc. 2012, 134, 12547.
Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFaks7k%3D&md5=4d414d86a77eafc3b19a26123235c5faCAS |

[108]  P. Venema, Charging and ion adsorption behavior of different iron (hydr)oxides 1997, Ph.D. thesis, University of Wageningen, The Netherlands.

[109]  Z. Futera, N. J. English, Electric-field effects on adsorbed-water structural and dynamical properties at rutile- and anatase-TiO2 surfaces. J. Phys. Chem. C 2016, 120, 19603.
Electric-field effects on adsorbed-water structural and dynamical properties at rutile- and anatase-TiO2 surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtl2rsrnL&md5=dbf4b31c54ff7a8140fb800bc37c1e0bCAS |

[110]  S. Roessler, R. Zimmermann, D. Scharnweber, C. Werner, H. Worch, Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloids Surf. B Biointerfaces 2002, 26, 387.
Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGqsL8%3D&md5=ea121c1a78c42055062b9968c5965a5eCAS |

[111]  S. Kataoka, M. C. Gurau, F. Albertorio, M. A. Holden, S.-M. Lim, R. D. Yang, P. S. Cremer, Investigation of water structure at the TiO2/aqueous interface. Langmuir 2004, 20, 1662.
Investigation of water structure at the TiO2/aqueous interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Wlug%3D%3D&md5=e95e7afbdf8ef211997da89bdb11c6fcCAS |

[112]  I. Larson, C. J. Drummond, D. Y. C. Chan, F. Grieser, Direct force measurements between titanium dioxide surfaces. J. Am. Chem. Soc. 1993, 115, 11885.
Direct force measurements between titanium dioxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2ksLs%3D&md5=b3941362b5016218c93d595379e4091bCAS |

[113]  A. Phan, T. A. Ho, D. R. Cole, A. Striolo, Molecular structure and dynamics in thin water films at metal oxide surfaces: magnesium, aluminum, and silicon oxide surfaces. J. Phys. Chem. C 2012, 116, 15962.
Molecular structure and dynamics in thin water films at metal oxide surfaces: magnesium, aluminum, and silicon oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslaju7Y%3D&md5=51167d40391181b2efb7585ca742b3d1CAS |

[114]  Y.-W. Chen, I.-H. Chu, Y. Wang, H.-P. Cheng, Water thin film-silica interaction on α-quartz (0001) surfaces. Phys. Rev. B 2011, 84, 155444.
Water thin film-silica interaction on α-quartz (0001) surfaces.Crossref | GoogleScholarGoogle Scholar |

[115]  R. S. Kavathekar, P. Dev, N. J. English, J. M. D. MacElroy, Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface. Mol. Phys. 2011, 109, 1649.
Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFeiu7nK&md5=cfe190d04d45fe7c6bb9c98b5ad50ba1CAS |

[116]  Y. Wang, P. Persson, F. M. Michel, G. E. Brown, Comparison of isoelectric points of single-crystal and polycrystalline α-Al2O3 and α-Fe2O3 surfaces. Am. Mineral. 2016, 101, 2248.

[117]  J. P. Fitts, X. Shang, G. W. Flynn, T. F. Heinz, K. B. Eisenthal, Electrostatic surface charge at aqueous/α-Al2O3 single-crystal interfaces as probed by optical second-harmonic generation. J. Phys. Chem. B 2005, 109, 7981.
Electrostatic surface charge at aqueous/α-Al2O3 single-crystal interfaces as probed by optical second-harmonic generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVKitbo%3D&md5=c6e3bf3e7992fb29eab657698620de35CAS |

[118]  N. Kallay, D. Kovačevic, I. Dedić, V. Tomašić, Effect of corrosion on the isoelectric point of stainless steel. Corrosion 1994, 50, 598.
Effect of corrosion on the isoelectric point of stainless steel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlyns7g%3D&md5=fff79093095b8138869176f779fcaf0eCAS |

[119]  C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 2009, 103, 137801.
Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates.Crossref | GoogleScholarGoogle Scholar |

[120]  K. C. Hass, W. F. Scheider, A. Curioni, W. Andreoni, First-principles molecular dynamics simulations of H2O on α-Al2O3 (0001). J. Phys. Chem. B 2000, 104, 5527.
First-principles molecular dynamics simulations of H2O on α-Al2O3 (0001).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1eltrs%3D&md5=bda917efd8ed146506f0c42a8fe4dab6CAS |

[121]  Y. Wang, P. Persson, F. M. Michel, G. E. Brown, Comparison of isoelectric points of single-crystal and polycrystalline α-Al2O3 and α-Fe2O3 surfaces. Am. Mineral. 2016, 101, 2248.
Comparison of isoelectric points of single-crystal and polycrystalline α-Al2O3 and α-Fe2O3 surfaces.Crossref | GoogleScholarGoogle Scholar |

[122]  G. V. Franks, Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. J. Colloid Interface Sci. 2002, 249, 44.
Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xislyns7s%3D&md5=26ac9090fe376876adc1ed69a4696f38CAS |

[123]  D. Zhou, Z. Ji, X. Jiang, D. R. Dunphy, J. Brinker, A. A. Keller, Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 2013, 8, e81239.
Influence of material properties on TiO2 nanoparticle agglomeration.Crossref | GoogleScholarGoogle Scholar |

[124]  K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2010, 6, 27.

[125]  L. Vayssieres, On the effect of nanoparticle size on water–oxide interfacial chemistry. J. Phys. Chem. C 2009, 113, 4733.
On the effect of nanoparticle size on water–oxide interfacial chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFansbg%3D&md5=58635b4ebac9192dd1f013698dbcb390CAS |

[126]  Y. T. He, J. Wan, T. Tokunaga, Kinetic stability of hematite nanoparticles: the effect of particle sizes. J. Nanopart. Res. 2008, 10, 321.
Kinetic stability of hematite nanoparticles: the effect of particle sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVelsLbP&md5=e27ee4ab9c74c861544e0413e73ef023CAS |