Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Solar-driven advanced oxidation processes for full mineralisation of azo dyes in wastewater

Chunhong Nie A , Pingping Sun A , Lingyue Zhu A , Simeng Gao A , Hongjun Wu A and Baohui Wang A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China.

B Corresponding author. Email: wangbh@nepu.edu.cn

Environmental Chemistry 14(3) 188-197 https://doi.org/10.1071/EN16202
Submitted: 13 December 2016  Accepted: 2 March 2017   Published: 20 March 2017

Environmental context. Full mineralisation of synthetic azo dyes in industrial wastewater is a tough job for traditional wastewater treatment technologies. There is an urgent need for the development of both sustainable and environmentally friendly technology capable of fully mineralising these azo compounds. We show that solar-driven advanced oxidation processes are capable of completely mineralising azo compounds with high utilisation of solar energy.

Abstract. Mineralisation of synthetic azo dyes in industrial wastewater is an energy-intensive process in treatment technology. The Solar Thermal Electrochemical Process for advanced oxidation processes (STEP-AOPs) utilises solar energy and electricity for the activation and electrooxidation of organic pollutants to harmless, small and non-toxic molecules with no other energy consumption. Based on molecular structure and chemistry, the STEP-AOPs for the treatment of azo dyes in wastewater, as exemplified with a typical azo dye, methyl orange, is reported for the first time. Thermodynamic calculations of the temperature-dependent potentials of methyl orange demonstrate that Gibbs free energy decreased by 161 kJ mol–1 and the potential decreased by 0.019 V with an increase of temperature from 20 to 80 °C, which indicates that the drop in both energy and potential specifically fits the STEP-AOPs technique. Experimental results showed that the STEP-AOPs achieved a total organic carbon (TOC) removal of 95.6 % for methyl orange. The TOC removal rate improved by 39.8 % and the unit TOC electricity consumption decreased by 53.8 % at 80 °C compared with conventional methods (20 °C). The mineralisation mechanism for methyl orange was a gradual shortening of the molecular chain through cleavage of the azo bond, breakdown of the benzene ring and formation of inorganic small molecules susceptible to be oxidised to non-toxic small molecules, and carbon dioxide via STEP-AOPs. The evidence shows that the STEP-AOPs is capable of mineralising azo compounds completely.

Additional keywords: electrochemistry, thermochemistry, wastewater treatment.


References

[1]  C. C. Hsu, Y. T. Wang, A. Yabushita, C. W. Luo, Y. N. Hsiao, S. H. Lin, T. Kobayashi, Environment-dependent ultrafast photoisomerization dynamics in azo dye. J. Phys. Chem. A 2011, 115, 11508.
Environment-dependent ultrafast photoisomerization dynamics in azo dye.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ChtbzI&md5=ab9e50efaf003f207a702bcbb70d55b5CAS |

[2]  E. Razo-Flores, M. Luijten, B. A. Donlon, G. Lettinga, J. A. Field, Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ. Sci. Technol. 1997, 31, 2098.
Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVSrsLs%3D&md5=398654174474f515775896156d982e09CAS |

[3]  A. Roy, B. Adhikari, S. B. Majumder, Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind. Eng. Chem. Res. 2013, 52, 6502.
Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1eksLw%3D&md5=6a711c898971046850e84ba16416dcfeCAS |

[4]  A. D. Bokare, R. C. Chikate, C. V. Rode, K. M. Paknikar, Effect of surface chemistry of Fe–Ni nanoparticles on mechanistic pathways of azo dye degradation. Environ. Sci. Technol. 2007, 41, 7437.
Effect of surface chemistry of Fe–Ni nanoparticles on mechanistic pathways of azo dye degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmsbfO&md5=0bbeda228d1a5a3ccc6995423d9e957aCAS |

[5]  J. Mathieu-Denoncourt, C. J. Martyniuk, S. R. de Solla, V. K. Balakrishnan, V. S. Langlois, Sediment contaminated with the azo dye Disperse Yellow 7 alters cellular stress- and androgen-related transcription in Silurana tropicalis larvae. Environ. Sci. Technol. 2014, 48, 2952.
Sediment contaminated with the azo dye Disperse Yellow 7 alters cellular stress- and androgen-related transcription in Silurana tropicalis larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12lsb8%3D&md5=baa04bc76e5d0cd5ccaff4e29c22eacdCAS |

[6]  N. Shang, Y. Yu, The biotoxicity and color formation results from ozonation of wastewaters containing phenol and aniline. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2001, 36, 383.
The biotoxicity and color formation results from ozonation of wastewaters containing phenol and aniline.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3ntleksw%3D%3D&md5=4dd8d61db91b2447257bb08b879e25c1CAS |

[7]  M. Solís, A. Solís, H. I. Pérez, N. Manjarrez, M. Flores, Microbial decolouration of azo dyes: a review. Process Biochem. 2012, 47, 1723.
Microbial decolouration of azo dyes: a review.Crossref | GoogleScholarGoogle Scholar |

[8]  A. B. dos Santos, F. J. Cervantes, J. B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 2007, 98, 2369.
Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVaiu78%3D&md5=b5ef9eb38df4ef289ae4cc60aaf5d2feCAS |

[9]  T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247.
Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Ortbk%3D&md5=347849c6330eefb533a2e51f38da4458CAS |

[10]  E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ. Int. 2004, 30, 953.
Removal of synthetic dyes from wastewaters: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFWgurk%3D&md5=b49bac36a902fcbcace4d90004646187CAS |

[11]  M. M. Naim, Y. M. El Abd, Removal and recovery of dyestuffs from dyeing wastewaters. Separ. Purif. Methods 2002, 31, 171.
Removal and recovery of dyestuffs from dyeing wastewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFagt7w%3D&md5=850df4bd9c00dd5984b6600ad7bbef71CAS |

[12]  S. K. Gupta, M. K. Nayunigari, R. Misra, F. A. Ansari, D. D. Dionysiou, A. Maity, F. Bux, Synthesis and performance evaluation of a new polymeric composite for the treatment of textile wastewater. Ind. Eng. Chem. Res. 2016, 55, 13.
Synthesis and performance evaluation of a new polymeric composite for the treatment of textile wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVagsL7I&md5=24feaac56bd88cb54834b2032f5249afCAS |

[13]  C. A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B 2009, 87, 105.
Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review.Crossref | GoogleScholarGoogle Scholar |

[14]  G. R. de Oliveira, C. K. C. de Araújo, C. A. Martínez-Huitle, D. R. da Silva, Complementary mechanism model for the electrochemical mineralization. Curr. Org. Chem. 2012, 16, 1957.
Complementary mechanism model for the electrochemical mineralization.Crossref | GoogleScholarGoogle Scholar |

[15]  C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional electrochemical process for wastewater treatment: a general review. Chem. Eng. J. 2013, 228, 455.
Three-dimensional electrochemical process for wastewater treatment: a general review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOru7%2FI&md5=e7714fc1631d23dff6f3a380dbd32f85CAS |

[16]  V. Khandegar, A. K. Saroha, Electrocoagulation for the treatment of textile industry effluent – a review. J. Environ. Manage. 2013, 128, 949.
Electrocoagulation for the treatment of textile industry effluent – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjtrbJ&md5=d88e2d663ffa81b08752f456e0626760CAS |

[17]  T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247.
Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Ortbk%3D&md5=347849c6330eefb533a2e51f38da4458CAS |

[18]  A. B. dos Santos, F. J. Cervantes, J. B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 2007, 98, 2369.
Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVaiu78%3D&md5=b5ef9eb38df4ef289ae4cc60aaf5d2feCAS |

[19]  G. Colón, M. C. Hidalgo, M. Macias, J. A. Navío, J. M. Doña, Influence of residual carbon on the photocatalytic activity of TiO2 samples for phenol oxidation. Appl. Catal. B 2003, 43, 163.
Influence of residual carbon on the photocatalytic activity of TiO2 samples for phenol oxidation.Crossref | GoogleScholarGoogle Scholar |

[20]  X. L. Li, G. Pan, Y. Qin, T. D. Hu, Z. Y. Wu, Y. N. Xie, EXAFS studies on adsorption–desorption reversibility at manganese oxide–water interfaces: II. Reversible adsorption of Zinc on δ-MnO2. J. Colloid Interface Sci. 2004, 271, 35.
EXAFS studies on adsorption–desorption reversibility at manganese oxide–water interfaces: II. Reversible adsorption of Zinc on δ-MnO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFelsg%3D%3D&md5=092d1e6911de11a0d79b962b1030351bCAS |

[21]  M. Zhu, Quantum chemical studies of mononuclear zinc species of hydration and hydrolysis. J. Phys. Chem. A 2005, 109, 7648.
Quantum chemical studies of mononuclear zinc species of hydration and hydrolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVCku78%3D&md5=a21773c8e810378f7d5b48b3cc092a37CAS |

[22]  D. Simonsson, Electrochemistry for a cleaner environment. Chem. Soc. Rev. 1997, 26, 181.
Electrochemistry for a cleaner environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Wmuro%3D&md5=667e8281527705f9d4c65ef8674f567aCAS |

[23]  M. Sala, M. C. Gutiérrez-Bouzán, Electrochemical techniques in textile processes and wastewater treatment. Int. J. Photoenergy 2012, 629103.
Electrochemical techniques in textile processes and wastewater treatment.Crossref | GoogleScholarGoogle Scholar |

[24]  M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541.
Direct and mediated anodic oxidation of organic pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFart78%3D&md5=b086a8192d39f7408cfaf9055e4d782dCAS |

[25]  E. Brillas, I. Sirés, M. A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570.
Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OkurrL&md5=b24ffe551e5f5e24c4d5a535a60a075bCAS |

[26]  I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. Int. 2014, 21, 8336.
Electrochemical advanced oxidation processes: today and tomorrow. A review.Crossref | GoogleScholarGoogle Scholar |

[27]  S. Licht, STEP (Solar Thermal Electrochemical Photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming. J. Phys. Chem. C 2009, 113, 16283.
STEP (Solar Thermal Electrochemical Photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgtL%2FL&md5=41ed1094757424554b5baf75e4b36cffCAS |

[28]  S. Licht, B. H. Wang, H. J. Wu, STEP – a solar chemical process to end anthropogenic global warming. II: Experimental results. J. Phys. Chem. C 2011, 115, 11803.
STEP – a solar chemical process to end anthropogenic global warming. II: Experimental results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1GhtrY%3D&md5=25e15bc6c80f69f38f2c8928ce881a8bCAS |

[29]  S. Licht, H. J. Wu, STEP Iron, a chemistry of iron formation without CO2 emission: molten carbonate solubility and electrochemistry of iron ore impurities. J. Phys. Chem. C 2011, 115, 25138.
STEP Iron, a chemistry of iron formation without CO2 emission: molten carbonate solubility and electrochemistry of iron ore impurities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeqtbfI&md5=f9b81f9545e8564a83cc364f60f38aeaCAS |

[30]  S. Licht, B. H. Wang, High solubility pathway for the carbon dioxide-free production of iron. Chem. Commun. 2010, 7004.
High solubility pathway for the carbon dioxide-free production of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWltrzL&md5=3e2451e707993a75758f9a804e7ff114CAS |

[31]  S. Licht, H. Wu, Z. Zhang, H. Ayub, Chemical mechanism of the high solubility pathway for the carbon dioxide-free production of iron. Chem. Commun. 2011, 3081.
Chemical mechanism of the high solubility pathway for the carbon dioxide-free production of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1equrc%3D&md5=b7e562dc715869e3b69575209bd16875CAS |

[32]  S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh, Efficient STEP (Solar Thermal Electrochemical Photo) production of hydrogen – an economic assessment. Int. J. Hydrogen Energy 2010, 35, 10867.
Efficient STEP (Solar Thermal Electrochemical Photo) production of hydrogen – an economic assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1emsb7P&md5=080fe4451406d54eb4da4c8fc995996dCAS |

[33]  S. Licht, Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach. Adv. Mater. 2011, 23, 5592.
Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgu7%2FF&md5=15845f55aec419124b3d5c4f49b851e7CAS |

[34]  S. Licht, B. H. Wang, S. Ghosh, H. Ayub, D. Jiang, J. Ganely, A new solar carbon-capture process: solar thermal electrochemical photo (STEP) carbon capture. J. Phys. Chem. Lett. 2010, 1, 2363.
A new solar carbon-capture process: solar thermal electrochemical photo (STEP) carbon capture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosleit7o%3D&md5=ee5b6bf30a6ca4e6f9f99bd3270dfbd4CAS |

[35]  S. Licht, H. J. Wu, C. Hettige, B. H. Wang, J. Asercion, J. Lau, J. Stuart, STEP cement: solar thermal electrochemical production of CaO without CO2 emission. Chem. Commun. 2012, 6019.
STEP cement: solar thermal electrochemical production of CaO without CO2 emission.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Khu74%3D&md5=720458a8ee3f993366fb3786c5b5f057CAS |

[36]  Y. J. Zhu, B. H. Wang, X. L. Liu, H. Y. Wang, H. J. Wu, S. Licht, STEP organic synthesis: an efficient solar, electrochemical process for the synthesis of benzoic acid. Green Chem. 2014, 16, 4758.
STEP organic synthesis: an efficient solar, electrochemical process for the synthesis of benzoic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGmur%2FM&md5=3b78f6c6ccf8173adaa199381116ac12CAS |

[37]  Y. J. Zhu, H. Y. Wang, B. H. Wang, X. L. Liu, H. J. Wu, S. Licht, Solar thermoelectric field plus photocatalysis for efficient organic synthesis exemplified by toluene to benzoic acid. Appl. Catal. B 2016, 193, 151.
Solar thermoelectric field plus photocatalysis for efficient organic synthesis exemplified by toluene to benzoic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsFCgtLg%3D&md5=bc80428b0df468bee9776fdcf136d969CAS |

[38]  B. H. Wang, H. J. Wu, G. X. Zhang, S. Licht, STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation. ChemSusChem 2012, 5, 2000.
STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaiu7bO&md5=0a3e30643afd697ede0100dff9d4e79fCAS |

[39]  B. H. Wang, Y. Hu, H. J. Wu, Solar driven thermal electrochemical process (STEP) wastewater treatment with synergistic production of hydrogen. ECS Electrochem.Lett. 2013, 2, H34.
Solar driven thermal electrochemical process (STEP) wastewater treatment with synergistic production of hydrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCku7fK&md5=29f083827bf75c3908702a74730f1240CAS |

[40]  C. H. Nie, N. Shao, B. H. Wang, D. D. Yuan, X. Sui, H. J. Wu, Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater. Chemosphere 2016, 154, 604.
Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtFCks7w%3D&md5=5aaee15d7baaceb9ac7cf0c60894bf39CAS |

[41]  D. D. Yuan, X. Y. Shen, L. Tian, D. Gu, L. Y. Zhu, B. H. Wang, Solar STEP organic decomposition plus hydrogen: a novel approach to efficient degradation of organic pollutants exemplified by acrylonitrile. Int. J. Hydrogen Energy 2016, 41, 17199.
Solar STEP organic decomposition plus hydrogen: a novel approach to efficient degradation of organic pollutants exemplified by acrylonitrile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlCitbfM&md5=4ca32da6fceab4f86fe921f11fccdd3aCAS |

[42]  D. Gu, N. Shao, Y. J. Zhu, H. J. Wu, B. H. Wang, Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: adaptation and adoption of solar STEP concept. J. Hazard. Mater. 2017, 321, 703.
Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: adaptation and adoption of solar STEP concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1SlurfI&md5=5e48b8b6777e1ec92ede98ba4afc8d73CAS |

[43]  B. H. Wang, D. Gu, L. Ji, H. J. Wu, Photocatalysis: a novel approach to efficient demulsification. Catal. Commun. 2016, 75, 83.
Photocatalysis: a novel approach to efficient demulsification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltFKgtA%3D%3D&md5=67449044222d4088eb0fe18713fa94f2CAS |

[44]  C. H. Nie, L. Xu, D. Gu, G. S. Cao, R. X. Yuan, B. H. Wang, Toward efficient demulsification of produced water in oilfields: solar STEP directional degradation of polymer on interfacial film of emulsions. Energy Fuels 2016, 30, 9686.
Toward efficient demulsification of produced water in oilfields: solar STEP directional degradation of polymer on interfacial film of emulsions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFGhsbrF&md5=b3a3cdcd634b6d8fe7b7240938909c7aCAS |

[45]  E. J. Ruiz, C. Arias, E. Brillas, A. Hernández-Ramírez, J. M. Peralta-Hernández, Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 2011, 82, 495.
Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agt7jM&md5=2ca5af71a71dbe0f14b8594d3ad33a51CAS |