Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Vermiculite as efficient sorbent of CeIII and CeIV

Zdeněk Klika A B D , Jana Seidlerová A , Ivan Kolomazník C and Marianna Hundáková A
+ Author Affiliations
- Author Affiliations

A Nanotechnology Centre, VŠB – Technical University of Ostrava, 17 Listopadu 15/2172, CZ–708 33 Ostrava – Poruba, Czech Republic.

B Department of Chemistry, VŠB – Technical University of Ostrava, 17 Listopadu 15/2172, CZ–708 33 Ostrava – Poruba, Czech Republic.

C Department of Mathematics, VŠB – Technical University of Ostrava, 17 Listopadu 15/2172, CZ–708 33 Ostrava – Poruba, Czech Republic.

D Corresponding author. Email: zdenek.klika@vsb.cz

Environmental Chemistry 14(1) 39-47 https://doi.org/10.1071/EN16112
Submitted: 16 June 2016  Accepted: 7 August 2016   Published: 12 September 2016

Environmental context. Cerium, a Technology Critical Element with many technical, agricultural, and medicinal applications, is increasingly being discharged to the environment. One of the best ways to remove cerium from wastes is its fixation into inexpensive bulk material such as vermiculite. This paper investigates the mechanism of CeIII and CeIV uptake and capture by vermiculite in neutral and acidic aqueous solutions.

Abstract. This study focussed on the mechanism of CeIII and CeIV uptake on vermiculite (Ver), which has been studied sporadically. Chemical equilibrium and leaching experiments in acid solutions were evaluated using batch experiments and changes of mineral composition were monitored by X-ray powder diffraction analysis. The concentrations of Ce, Na, K, Ca, Mg, Al and Si were determined by atomic emission spectroscopy coupled with inductively coupled plasma (AES-ICP). The data for CeIII uptake on Ver in neutral aqueous solution were fitted both with adsorption and ion-exchange models. The latter, with a calculated selectivity constant EN16112_IE1.gif = 14.30 (L mmol–1)k–1, showed a better fit with experimental data than adsorption models. The uptake of CeIII on Ver at pH 2 was also controlled by intensive leaching of cations from 2 : 1 layers and therefore these data were not fitted. A much higher uptake of CeIV on Ver (~6 mequiv. g–1, i.e. ~210 mg g–1) at pH 2 and 6 in comparison with the cation-exchange capacity of original vermiculite (1.28 mequiv. g–1) was found and explained. With regard to the different rate of CeIV species fixation on Ver, their different CeIV solubility in NaCl solution, aqueous acid solution (pH 2), and 3 M H2SO4, three species of CeIV bonded on vermiculite are proposed. They are ion-exchanged CeIV, CeIV–complex 1 and CeIV–complex 2. The CeIV species uptake on Ver was quantitatively determined both for pH 2 and 6. The new findings show a very effective method of cerium uptake, especially from acidic aqueous solutions.

Additional keywords: adsorption and desorption, ion exchange, leaching, mechanism of uptake.


References

[1]  M. Yamashita, K. Kameyama, S. Yabe, S. Yoshida, Y. Fujishiro, T. Kawai, T. Sato, Synthesis and microstructure of calcia-doped ceria as UV filters. J. Mater. Sci. 2002, 37, 683.
Synthesis and microstructure of calcia-doped ceria as UV filters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitV2lt70%3D&md5=524adb24ed433a87a0575450453bdcf1CAS |

[2]  I. M. Hung, H. P. Wang, W. H. Lai, K. Z. Fung, M. H. Hon, Preparation of mesoporous cerium oxide template by triblock copolymer for solid oxide fuel cell. Electrochim. Acta 2004, 50, 745.
Preparation of mesoporous cerium oxide template by triblock copolymer for solid oxide fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlymtr0%3D&md5=749753e3da37225523f6779d8885aae9CAS |

[3]  C. Harvey, G. Lagaly, Conventional applications, in Handbook of Clay Science (Eds F. Bergaya, B. K. G. Theng, G. Lagaly) 2006, pp. 501–540 (Elsevier: Amsterdam).

[4]  A. Bumajdad, J. Eastoe, A. Mathew, Cerium oxide nanoparticles prepared in self-assembled systems. Adv. Colloid Interface Sci. 2009, 147–148, 56.
Cerium oxide nanoparticles prepared in self-assembled systems.Crossref | GoogleScholarGoogle Scholar | 19027889PubMed |

[5]  M. F. Luo, Y. J. Zhong, X. X. Yuan, X. M. Zheng, TPR and TPD studies of CuO/CeO2 catalysts for low-temperature CO oxidation. Appl. Catal. A Gen. 1997, 162, 121.
TPR and TPD studies of CuO/CeO2 catalysts for low-temperature CO oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1alt78%3D&md5=68e089cf79d4787097fc80a3e4f45c08CAS |

[6]  J. W. Park, J. H. Jeong, W. L. Yoon, H. Jung, H. T. Lee, D. K. Lee, Y. K. Park, Y. W. Rhee, Activity and characterization of the Co-promoted CuO-CeO2/γ-Al2O3 catalyst for the selective oxidation of CO in excess hydrogen. Appl. Catal. A Gen. 2004, 274, 25.
Activity and characterization of the Co-promoted CuO-CeO2/γ-Al2O3 catalyst for the selective oxidation of CO in excess hydrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt12qu7o%3D&md5=c502c2831e3011493c53aba80879fe7fCAS |

[7]  P. Ji, J. Zhang, F. Chen, M. Anpo, Study of adsorption and degradation of Acid Orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal. B 2009, 85, 148.
Study of adsorption and degradation of Acid Orange 7 on the surface of CeO2 under visible light irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtbrF&md5=68508aff836172753fefd92df4d25b00CAS |

[8]  B. S. Guo, Recent research advances of rare earth in the field of biology. Chinese Rare Earth 1999, 20, 64. [In Chinese]

[9]  D. Talburt, G. Johnson, Some effects of rare earth elements and yttrium on microbial growth. Mycologia 1967, 59, 492.
Some effects of rare earth elements and yttrium on microbial growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXksl2qsb8%3D&md5=7e49471d096cceeeccb51009e34afc80CAS |

[10]  B. Kremer, M. Allgower, M. Graf, K. H. Schmidt, J. Schoetmerich, G. Schoenenberger, The present status of research in burns toxins. Intensive Care Med. 1981, 7, 77.
The present status of research in burns toxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlehtr4%3D&md5=4340566c8687f1194e9a92877ba724c9CAS | 7204743PubMed |

[11]  N. Papin-Castéla, P. Prognon, F. Keller, S. Bénazeth, R. Farinotti, G. Mahuzier, Ch. Souleau, Cerium-doped diosmectite for topical application studies of the cerium–clay interaction. Int. J. Pharm. 1999, 181, 193.
Cerium-doped diosmectite for topical application studies of the cerium–clay interaction.Crossref | GoogleScholarGoogle Scholar | 10370215PubMed |

[12]  A. Hagen, Waste management – nuclear power, man and the environment. IAEA Bull. 2007, 24, 3.

[13]  S. S. Dubey, B. S. Rao, Removal of cerium ions from aqueous solution by hydrous ferric oxide – a radiotracer study. J. Hazard. Mater. 2011, 186, 1028.
Removal of cerium ions from aqueous solution by hydrous ferric oxide – a radiotracer study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVajsbg%3D&md5=bd7a2ec61a637718c35cc2e89a525812CAS | 21168956PubMed |

[14]  W. Lin, Y. Huang, X. D. Zhou, Y. Ma, Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 2006, 25, 451.
Toxicity of cerium oxide nanoparticles in human lung cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntF2kug%3D%3D&md5=71a4531442e6810eb507d194a595736fCAS | 17132603PubMed |

[15]  N. J. Rogers, N. M. Franklin, S. C. Apte, G. E. Batley, B. M. Angel, J. R. Lead, M. Baalousha, Physicochemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem. 2010, 7, 50.
Physicochemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLs%3D&md5=95f2745ea2bb18bab901238585a5724bCAS |

[16]  L. A. Röhder, T. Brandt, L. Sigg, R. Behra, Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short-term effects to the green algae. Chlamydomonas reinhardtii. Aquat. Toxicol. 2014, 152, 121.
Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short-term effects to the green algae. Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 24747084PubMed |

[17]  D. Li, S. Huang, W. Wang, A. Peng, Study of kinetics of cerium(III) adsorption–desorption on different soils of China. Chemosphere 2001, 44, 663.
Study of kinetics of cerium(III) adsorption–desorption on different soils of China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVeht74%3D&md5=26cc3d4c40bda7bc17988580f433f29fCAS | 11482654PubMed |

[18]  S. Sert, K. Ceren, I. Süleyman, T. Zeynep, C. Berkan, E. Meral, Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy 2008, 90, 13.
Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVGrsQ%3D%3D&md5=1ff7b3da559ab1dec2debe77550bd462CAS |

[19]  N. Das, D. Das, Recovery of rare earth metals through biosorption. J. Rare Earths 2013, 31, 933.
Recovery of rare earth metals through biosorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyksbfM&md5=c0371caa33931330de83b9f380a33229CAS |

[20]  J. S. C. Varshini, D. Das, N. Das, Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: equilibrium, kinetic, thermodynamic and regeneration studies. J. Rare Earths 2014, 32, 745.
Optimization of parameters for cerium(III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: equilibrium, kinetic, thermodynamic and regeneration studies.Crossref | GoogleScholarGoogle Scholar |

[21]  C. H. Xiong, X. Z. Liu, C. P. Yao, Effect of pH on sorption for REIII and sorption behaviors of SmIII by D152 resin. J. Rare Earths 2008, 26, 851.
Effect of pH on sorption for REIII and sorption behaviors of SmIII by D152 resin.Crossref | GoogleScholarGoogle Scholar |

[22]  X. Chunhua, Sorption behaviour of D155 resin for CeIII. Indian J. Chem. 2008, 47A, 1377.

[23]  S. Bruque, T. Mozas, A. Rodriguez, Factors influencing retention of lanthanide ions by montmorillonite. Clay Miner. 1980, 15, 413.
Factors influencing retention of lanthanide ions by montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjs12gtg%3D%3D&md5=6616d10e29c82b66e35f8ba9fd3fb4e4CAS |

[24]  S. E. Miller, G. R. Heath, R. D. Gonzalez, Effects of temperature on the sorption of lanthanides by montmorillonite. Clays Clay Miner. 1982, 30, 111.
Effects of temperature on the sorption of lanthanides by montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhs12gtro%3D&md5=d7892ea371ebd3c8584dd100eaf4198eCAS |

[25]  S. E. Miller, G. R. Heath, R. D. Gonzalez, Effect of pressure on the sorption of Yb by montmorillonite. Clays Clay Miner. 1983, 31, 17.
Effect of pressure on the sorption of Yb by montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtlarsLo%3D&md5=102c0c1b6078896baeb17e8ced85faafCAS |

[26]  T. Mozas, S. Bruque, A. Rodriguez, Effect of thermal treatment on lanthanide montmorillonites: dehydration. Clay Miner. 1980, 15, 421.
Effect of thermal treatment on lanthanide montmorillonites: dehydration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjs12gtw%3D%3D&md5=015144dc4c6e9355ae082130e4781ed9CAS |

[27]  H. J. W. de Baar, C. R. German, H. Elderfield, P. van Gaans, Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim. Cosmochim. Acta 1988, 52, 1203.
Rare earth element distributions in anoxic waters of the Cariaco Trench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkt1Oht74%3D&md5=b0039f20923bc294d0ba49221be2623dCAS |

[28]  C. R. German, H. Elderfield, Rare-earth elements in Saanich inlet, British Columbia, a seasonally anoxic basin. Geochim. Cosmochim. Acta 1989, 53, 2561.
Rare-earth elements in Saanich inlet, British Columbia, a seasonally anoxic basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXisFWqtQ%3D%3D&md5=ad79e2e44abc14b94419cb6f93eddb66CAS |

[29]  F. Laufer, S. Yariv, M. Steinberg, The adsorption of quadrivalent cerium by kaolinite. Clay Miner. 1984, 19, 137.
The adsorption of quadrivalent cerium by kaolinite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltlOksbo%3D&md5=47b70ac9f4c691813d2f5f46c85467d4CAS |

[30]  D. I. Rjabchikova, V. A. Rjabuhina, Analytical Chemistry of Yttrium and Rare Earth Elements 1966 (Nauka: Moscow) [In Russian].

[31]  K. A. Bol’shakov, Chemistry and Technology of Rare Earth Elements 1976 (Vysshaja Shkola: Moscow) [In Russian].

[32]  J. J. Braun, J. Viers, B. Dupré, M. Polve, J. Ndam, J. Muller, Solid/liquid REE fractionation in the lateritic system of Goyoum, east Cameroon. The implication for the present dynamics of the soil covers of the humid tropical regions. Geochim. Cosmochim. Acta 1998, 62, 273.
Solid/liquid REE fractionation in the lateritic system of Goyoum, east Cameroon. The implication for the present dynamics of the soil covers of the humid tropical regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvVGjsrc%3D&md5=7b2c0d3cabb08d39f7e041e6dd0937e2CAS |

[33]  E. H. De Carlo, X.-Y. Wen, M. Irving, The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles. Aquat. Geochem. 1997, 3, 357.
The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVOhtbw%3D&md5=04e9f9c7681b4b0d0e9e830872abd034CAS |

[34]  M. Bau, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide, experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999, 63, 67.
Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide, experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFGktb8%3D&md5=c2aecddaee838a2822747b73e9b63c99CAS |

[35]  A. Ohta, I. Kawabe, REEIII adsorption onto Mn dioxide and Fe oxyhydroxide, CeIII oxidation by Mn dioxide. Geochim. Cosmochim. Acta 2001, 65, 695.
REEIII adsorption onto Mn dioxide and Fe oxyhydroxide, CeIII oxidation by Mn dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Srurg%3D&md5=76b338935c47118bfe44b032c89af57fCAS |

[36]  L. V. Gorobinskii, G. Y. Yurkov, D. A. Baranov, Production of high-porosity nanoparticles of cerium oxide in clay. Microporous Mesoporous Mater. 2007, 100, 134.
Production of high-porosity nanoparticles of cerium oxide in clay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsF2hsbs%3D&md5=046b0f4cf7ddbc65a632768b1580fc5cCAS |

[37]  P. Olivera-Pastor, E. Rodríguez-Castellón, A. Rodríguez García, Uptake of lanthanides by vermiculite. Clays Clay Miner. 1988, 36, 68.
Uptake of lanthanides by vermiculite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsFekurs%3D&md5=e291f9182711211909a6acc8965f8ee1CAS |

[38]  S. U. Aja, The sorption of rare earth element, Nd, onto kaolinite at 25 °C. Clays Clay Miner. 1998, 46, 103.
The sorption of rare earth element, Nd, onto kaolinite at 25 °C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFalurs%3D&md5=9617545fda74d5ce2605f6798907cfcaCAS |

[39]  J. Seidlerová, H. Otoupalíková, M. Nováčková, Kinetics of leaching of pollutants from metallurgical wastes. Chem. Listy 2007, 101, 165. [In Czech]

[40]  Z. Weiss, Z. Klika, P. Čapková, D. Janeba, S. Kozubová, Sodium–cadmium and sodium–zinc exchangeability in montmorillonite. Phys. Chem. Miner. 1998, 25, 534.
Sodium–cadmium and sodium–zinc exchangeability in montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVSrsb0%3D&md5=a7c753a7c6730a16d5808121606be7f3CAS |

[41]  A. I. Vogel, A Textbook of Quantitative Inorganic Analysis 1961 (Longmans: London).

[42]  J. Langmuir, Adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918, 40, 1361.
Adsorption of gases on plane surfaces of glass, mica, and platinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC1cXht1KgsA%3D%3D&md5=3abbcc7565818c39f71d1eed9e509c6cCAS |

[43]  S. Sohn, D. Kim, Modification of Langmuir isotherm in solution systems – definition and utilization of concentration-dependent factor. Chemosphere 2005, 58, 115.
Modification of Langmuir isotherm in solution systems – definition and utilization of concentration-dependent factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1arsb8%3D&md5=fba46db0aea8aeda1154b2577e62f2fbCAS | 15522340PubMed |

[44]  H. M. F. Freundlich, Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57A, 385.

[45]  M. M. Dubinin, E. D. Zaverina, L. V. Radushkevitch, Sorption and structure of active carbons. J. Phys. Chem. 1947, 21, 1351.
| 1:CAS:528:DyaH1cXisVKmsA%3D%3D&md5=6cea83eeda1084b8821f9e71779d0715CAS |

[46]  F. Bergaya, B. K. G. Theng, G. Lagaly, Modified clays and clay minerals, in Handbook of Clay Science (Eds F. Bergaya, B. K. G. Theng, G. Lagaly) 2006, p. 261 (Elsevier: Amsterdam).

[47]  S. Z. Tan, K. H. Zhang, L. L. Zhang, Y. S. Xie, Y. L. Liu, Preparation and characterization of the antibacterial Zn2+or/and Ce3+-loaded montmorillonites. Chin. J. Chem. 2008, 26, 865.
Preparation and characterization of the antibacterial Zn2+or/and Ce3+-loaded montmorillonites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVaqsbY%3D&md5=1be1cb842171404806a23cb1ce746e4fCAS |

[48]  Y. Ouyang, Y. Xie, S. Tan, Q. Shi, Y. Chen, Structure and antibacterial activity of Ce3+-exchanged montmorillonites. J. Rare Earths 2009, 27, 858.
Structure and antibacterial activity of Ce3+-exchanged montmorillonites.Crossref | GoogleScholarGoogle Scholar |

[49]  S. A. Hayes, P. Yu, T. J. O’Keefe, M. J. O’Keefe, J. O. Stoffer, The phase stability of cerium species in aqueous systems. I. E-pH diagram for the Ce–HClO4–H2O system. J. Electrochem. Soc. 2002, 149, C623.
The phase stability of cerium species in aqueous systems. I. E-pH diagram for the Ce–HClO4–H2O system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVWjtbs%3D&md5=b23b958acdbf44d1eeb5e185fdf0f152CAS |

[50]  P. Yu, T. J. O’Keefe, The phase stability of cerium species in aqueous systems III. The Ce(III/IV)-H2O-H2O2/O2 systems dimeric CeIV species. J. Electrochem. Soc. 2006, 153, C80.
The phase stability of cerium species in aqueous systems III. The Ce(III/IV)-H2O-H2O2/O2 systems dimeric CeIV species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCgurzI&md5=93574af1038dd69e1ad96c4735b8f438CAS |

[51]  Z. Klika, J. Seidlerová, M. Valášková, Ch. Kliková, I. Kolomazník, Uptake of CeIII on montmorillonite. Appl. Clay Sci. 2016, in press.
Uptake of CeIII on montmorillonite.Crossref | GoogleScholarGoogle Scholar |