Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Cellular and molecular mechanisms of antimony transport, toxicity and resistance

Markus J. Tamás
+ Author Affiliations
- Author Affiliations

Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden. Email: markus.tamas@cmb.gu.se




Markus J. Tamás studied molecular biology and biochemistry at the Lund University (Sweden) and University of Liège (Belgium) and spent a year as a research scholar at the Public Health Research Institute in New York (USA). Tamás completed his PhD at the University of Leuven (Belgium) in 1999, was awarded an assistant professorship by the Swedish Research Council in 2003, and became professor in eukaryotic microbiology at the University of Gothenburg (Sweden) in 2010.

Environmental Chemistry 13(6) 955-962 https://doi.org/10.1071/EN16075
Submitted: 31 March 2016  Accepted: 5 July 2016   Published: 22 August 2016

Environmental context. Antimony is a toxic metalloid that is used in a wide range of modern technology applications and in medical treatments. The accelerating needs for antimony in various industrial applications has led to concerns about increased human and environmental exposure. This review provides a brief summary of the biological properties of antimony and its mechanisms of actions in cells.

Abstract. Antimony is a toxic metalloid that is naturally present in low amounts in the environment, but can locally reach high concentrations at mining and processing sites. Today, antimony is used in a wide range of modern technology applications and is also an important constituent of pharmacological drugs. The increasing use of antimony has led to concerns about human and environmental exposure. Yet little is known about the biological properties of antimony and its mechanisms of actions in cells. This review will provide a brief summary of how antimony enters and affects cells, and how cells deal with the presence of this metalloid to acquire resistance.

Additional keywords: Acr3, ABC transporter, aquaglyceroporin, arsenic, glutathione, Leishmania, metalloid, yeast.


References

[1]  E. Lombi, P. E. Holm, Metalloids, soil chemistry and the environment. Adv. Exp. Med. Biol. 2010, 679, 33.
Metalloids, soil chemistry and the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsrjF&md5=4a5eb81211828447e3ae303500c763dfCAS | 20666222PubMed |

[2]  A. Pierart, M. Shahid, N. Sejalon-Delmas, C. Dumat, Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 2015, 289, 219.
Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlSguro%3D&md5=1c69a998609e11452057ebc2e097c2e7CAS | 25726907PubMed |

[3]  S. Yan, L. Jin, H. Sun, Antimony in medicine, in Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: the Use of Metals in Medicine (Eds M Gielen ER Tiekink) 2005, pp. 441–462 (John Wiley & Sons, Ltd: Chichester, UK).

[4]  R. W. Feng, C. Y. Wei, S. X. Tu, Y. Z. Ding, R. G. Wang, J. K. Guo, The uptake and detoxification of antimony by plants: a review. Environ. Exp. Bot. 2013, 96, 28.
The uptake and detoxification of antimony by plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ort7fF&md5=5fae5461c76048afe925623c30731635CAS |

[5]  D. Beyersmann, A. Hartwig, Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493.
Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt12rsL0%3D&md5=b4bd81b38b93cb700bf5d4ee6999c1c4CAS | 18496671PubMed |

[6]  T. Cheng, H. Sun, Antimony and bismuth, in Binding, Transport and Storage of Metal Ions in Biological Cells (Eds W Maret, A Wedd) 2014 pp. 768–799 (Royal Society of Chemistry: Cambridge, UK).

[7]  A. Ramírez-Solís, R. Mukopadhyay, B. P. Rosen, T. L. Stemmler, Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As–O. Inorg. Chem. 2004, 43, 2954.
Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As–O.Crossref | GoogleScholarGoogle Scholar | 15106984PubMed |

[8]  A. Porquet, M. Filella, Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem. Res. Toxicol. 2007, 20, 1269.
Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVelu74%3D&md5=fca02d59a2146142a4788a66a284739cCAS | 17713961PubMed |

[9]  J. P. Allen, J. J. Carey, A. Walsh, D. O. Scanlon, G. W. Watson, Electronic structures of antimony oxides. J. Phys. Chem. C 2013, 117, 14759.
Electronic structures of antimony oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGku70%3D&md5=fa1e1652504c5021b702da6d22bcce57CAS |

[10]  S. Sundar, J. Chakravarty, Antimony toxicity. Int. J. Environ. Res. Public Health 2010, 7, 4267.
Antimony toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFSntw%3D%3D&md5=e99c8c4cba564a014df85745c47bd88dCAS | 21318007PubMed |

[11]  N. Verbruggen, C. Hermans, H. Schat, Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 2009, 12, 364.
Mechanisms to cope with arsenic or cadmium excess in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFSju74%3D&md5=b8ce35a795cbfb64e2989a18a97a0eacCAS | 19501016PubMed |

[12]  J. A. Lemire, J. J. Harrison, R. J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371.
Antimicrobial activity of metals: mechanisms, molecular targets and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsV2jt7k%3D&md5=57b8ba492c7512a1009b25da3f2bcebfCAS | 23669886PubMed |

[13]  M. J. Tamás, K. S. Sharma, S. Ibstedt, T. Jacobson, P. Christen, Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014, 4, 252.
Heavy metals and metalloids as a cause for protein misfolding and aggregation.Crossref | GoogleScholarGoogle Scholar | 24970215PubMed |

[14]  R. Wysocki, M. J. Tamás, How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol. Rev. 2010, 34, 925.
How Saccharomyces cerevisiae copes with toxic metals and metalloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSrs7%2FJ&md5=2717005cf806b1d885bb53c6f4e552a6CAS | 20374295PubMed |

[15]  C. Cobbett, P. Goldsbrough, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159.
Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbs%3D&md5=8eb5a8ed2ef89fe88347cc6d2af5aff9CAS | 12221971PubMed |

[16]  G. P. Bienert, M. D. Schüssler, T. P. Jahn, Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 2008, 33, 20.
Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2jsA%3D%3D&md5=dcf1e5e23eb3de400738ac1ca5a280edCAS | 18068370PubMed |

[17]  R. Mukhopadhyay, H. Bhattacharjee, B. P. Rosen, Aquaglyceroporins: generalized metalloid channels. Biochim. Biophys. Acta 2014, 1840, 1583.
Aquaglyceroporins: generalized metalloid channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGitb7J&md5=ad9a3954dd0e2aee7e6e799a706e2533CAS | 24291688PubMed |

[18]  B. P. Rosen, M. J. Tamás, Arsenic transport in prokaryotes and eukaryotic microbes. Adv. Exp. Med. Biol. 2010, 679, 47.
Arsenic transport in prokaryotes and eukaryotic microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsrnM&md5=83c917445d4ea0c28954f473ebace84fCAS | 20666223PubMed |

[19]  O. I. Sanders, C. Rensing, M. Kuroda, B. Mitra, B. P. Rosen, Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J. Bacteriol. 1997, 179, 3365.
| 1:CAS:528:DyaK2sXjtFOhurw%3D&md5=e26275f080c2a3f29a00b85604fbdaa1CAS | 9150238PubMed |

[20]  Y. L. Meng, Z. Liu, B. P. Rosen, AsIII and SbIII uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 2004, 279, 18334.
AsIII and SbIII uptake by GlpF and efflux by ArsB in Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVKntbo%3D&md5=fbfb49a5dc1d8fde64e615c58d3b9c48CAS | 14970228PubMed |

[21]  C. Hachez, F. Chaumont, Aquaporins: a family of highly regulated multifunctional channels. Adv. Exp. Med. Biol. 2010, 679, 1.
Aquaporins: a family of highly regulated multifunctional channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsrjL&md5=cc7b4184667c9f13ed89df6d932f3b83CAS | 20666220PubMed |

[22]  R. Wysocki, C. C. Chéry, D. Wawrzycka, M. Van Hulle, R. Cornelis, J. M. Thevelein, M. J. Tamás, The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 2001, 40, 1391.
The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Gnsrw%3D&md5=eca461efb1523c08c6190d21cc1a3ec3CAS | 11442837PubMed |

[23]  G. P. Bienert, M. Thorsen, M. D. Schussler, H. R. Nilsson, A. Wagner, M. J. Tamás, T. P. Jahn, A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 2008, 6, 26.
A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes.Crossref | GoogleScholarGoogle Scholar | 18544156PubMed |

[24]  J. F. Ma, N. Yamaji, N. Mitani, X. Y. Xu, Y. H. Su, S. P. McGrath, F. J. Zhao, Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931.
Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFGisbc%3D&md5=054b8e92f208238c1fbb12dce439ae1cCAS | 18626020PubMed |

[25]  M. F. Naujokas, B. Anderson, H. Ahsan, H. V. Aposhian, J. H. Graziano, C. Thompson, W. A. Suk, The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295.
The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsF2isLg%3D&md5=c6b2c7e958c24056983c7974f26c1743CAS | 23458756PubMed |

[26]  B. Pommerrenig, T. A. Diehn, G. P. Bienert, Metalloido-porins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 2015, 238, 212.
Metalloido-porins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWgur7N&md5=6d2a8acf6e469a7399fdb235d80185b6CAS | 26259189PubMed |

[27]  T. Kamiya, T. Fujiwara, Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol. 2009, 50, 1977.
Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVajur%2FK&md5=4cce849d0a4626560d7dd007ebf882cfCAS | 19783540PubMed |

[28]  Z. Liu, J. Shen, J. M. Carbrey, R. Mukhopadhyay, P. Agre, B. P. Rosen, Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 2002, 99, 6053.
Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWgu7g%3D&md5=54c5b5128bf1652136f4212a3db9ed9dCAS | 11972053PubMed |

[29]  Z. Liu, J. M. Carbrey, P. Agre, B. P. Rosen, Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem. Biophys. Res. Commun. 2004, 316, 1178.
Arsenic trioxide uptake by human and rat aquaglyceroporins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVKmsLo%3D&md5=2dc33969ab3ebd80143e958c0271046fCAS | 15044109PubMed |

[30]  H. Bhattacharjee, J. Carbrey, B. P. Rosen, R. Mukhopadhyay, Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem. Biophys. Res. Commun. 2004, 322, 836.
Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeqsb4%3D&md5=d96ce8a97236b8f7b93652827ebc24ffCAS | 15336539PubMed |

[31]  H. C. Yang, J. Cheng, T. M. Finan, B. P. Rosen, H. Bhattacharjee, Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 2005, 187, 6991.
Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCiurjP&md5=af3ae5034615b5debfb57b7b45541eadCAS | 16199569PubMed |

[32]  E. Maciaszczyk-Dziubinska, I. Migdal, M. Migocka, T. Bocer, R. Wysocki, The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 2010, 584, 726.
The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1yhtrs%3D&md5=dab35000190ef0eef5f5c03e9dfb6322CAS | 20026328PubMed |

[33]  J. M. Carbrey, L. Song, Y. Zhou, M. Yoshinaga, A. Rojek, Y. Wang, Y. Liu, H. L. Lujan, S. E. DiCarlo, S. Nielsen, B. P. Rosen, P. Agre, R. Mukhopadhyay, Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc. Natl. Acad. Sci. USA 2009, 106, 15956.
Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqt7fO&md5=84d23bdb65160a843d177b9651da1594CAS | 19805235PubMed |

[34]  F. Frézard, C. Demicheli, R. R. Ribeiro, Pentavalent antimonials: new perspectives for old drugs. Molecules 2009, 14, 2317.
Pentavalent antimonials: new perspectives for old drugs.Crossref | GoogleScholarGoogle Scholar | 19633606PubMed |

[35]  B. Gourbal, N. Sonuc, H. Bhattacharjee, D. Legare, S. Sundar, M. Ouellette, B. P. Rosen, R. Mukhopadhyay, Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem. 2004, 279, 31010.
Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslOktbw%3D&md5=250f22b1f9481533d7579f3e72a86711CAS | 15138256PubMed |

[36]  N. Marquis, B. Gourbal, B. P. Rosen, R. Mukhopadhyay, M. Ouellette, Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol. Microbiol. 2005, 57, 1690.
Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqsrrP&md5=b745e581baede7e4beda2d27bb680cc6CAS | 16135234PubMed |

[37]  M. Maharjan, S. Singh, M. Chatterjee, R. Madhubala, Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am. J. Trop. Med. Hyg. 2008, 79, 69.
| 1:CAS:528:DC%2BD1cXptlWqs7Y%3D&md5=b0c6db5f63fcf919ddb0708f0a6e4146CAS | 18606765PubMed |

[38]  Z. Liu, E. Boles, B. P. Rosen, Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 17312.
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1GnsL4%3D&md5=ceeb2ba4edfb79347825f05726231a2eCAS | 14966117PubMed |

[39]  Z. Liu, M. A. Sanchez, X. Jiang, E. Boles, S. M. Landfear, B. P. Rosen, Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem. Biophys. Res. Commun. 2006, 351, 424.
Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOjtrvJ&md5=d656eb9a4417c0d4959e36d060bab067CAS | 17064664PubMed |

[40]  X. Jiang, J. R. McDermott, A. A. Ajees, B. P. Rosen, Z. Liu, Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1. Metallomics 2010, 2, 211.
Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWktLo%3D&md5=5c79d251a58cb2e19229167d04248cccCAS | 21069159PubMed |

[41]  E. Maciaszczyk-Dziubinska, D. Wawrzycka, R. Wysocki, Arsenic and antimony transporters in eukaryotes. Int. J. Mol. Sci. 2012, 13, 3527.
Arsenic and antimony transporters in eukaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVyjur8%3D&md5=28441e3cecd9bbfa03496978373f0416CAS | 22489166PubMed |

[42]  R. Zangi, M. Filella, Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem. Biol. Interact. 2012, 197, 47.
Transport routes of metalloids into and out of the cell: a review of the current knowledge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFyns74%3D&md5=991694fbf7f5c2d610dbf6051adb2227CAS | 22370390PubMed |

[43]  Y. Zhou, N. Messier, M. Ouellette, B. P. Rosen, R. Mukhopadhyay, Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam. J. Biol. Chem. 2004, 279, 37445.
Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFSgu78%3D&md5=4c9a71c2404d6db44959595fa3eb5468CAS | 15220340PubMed |

[44]  H. Denton, J. C. McGregor, G. H. Coombs, Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem. J. 2004, 381, 405.
Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslGntrY%3D&md5=35d153c140ec96988b23587c0688a0c6CAS | 15056070PubMed |

[45]  F. Frezard, C. Demicheli, C. S. Ferreira, M. A. Costa, Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob. Agents Chemother. 2001, 45, 913.
Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFWgu7w%3D&md5=c9805a3faa8bad144d2ea52f7df201bbCAS | 11181379PubMed |

[46]  S. Yan, I. L. Wong, L. M. Chow, H. Sun, Rapid reduction of pentavalent antimony by trypanothione: potential relevance to antimonial activation. Chem. Commun. 2003, 266.
Rapid reduction of pentavalent antimony by trypanothione: potential relevance to antimonial activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1ahtg%3D%3D&md5=f92fb87b5b7f97b826824260ee0488d2CAS |

[47]  S. C. Yan, F. Li, K. Y. Ding, H. Z. Sun, Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J. Biol. Inorg. Chem. 2003, 8, 689.
Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVOnsr4%3D&md5=86cacd64ef07cc9159de1e6c2f04e440CAS |

[48]  L. S. Tisa, B. P. Rosen, Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 1990, 265, 190.
| 1:CAS:528:DyaK3cXpsVSgtg%3D%3D&md5=fa0d54b80637786c93ed42fb3dfe4c4bCAS | 1688427PubMed |

[49]  T. Zhou, S. Radaev, B. P. Rosen, D. L. Gatti, Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J. 2000, 19, 4838.
Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslGrs70%3D&md5=e85167060c365e536229ff4f5443c00eCAS | 10970874PubMed |

[50]  E. Maciaszczyk-Dziubinska, D. Wawrzycka, E. Sloma, M. Migocka, R. Wysocki, The yeast permease Acr3p is a dual arsenite and antimonite plasma membrane transporter. Biochim. Biophys. Acta 2010, 1798, 2170.
The yeast permease Acr3p is a dual arsenite and antimonite plasma membrane transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhurjJ&md5=376694416ac6f4c882cdf245997dc67aCAS | 20655873PubMed |

[51]  E. Maciaszczyk-Dziubinska, M. Migocka, R. Wysocki, Acr3p is a plasma membrane antiporter that catalyzes AsIII/H+ and SbIII/H+ exchange in Saccharomyces cerevisiae. Biochim. Biophys. Acta 2011, 1808, 1855.
Acr3p is a plasma membrane antiporter that catalyzes AsIII/H+ and SbIII/H+ exchange in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVOqs70%3D&md5=a58d4dbe6880cfea53f33406e31ec909CAS | 21447319PubMed |

[52]  R. Wysocki, P. Bobrowicz, S. Ulaszewski, The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J. Biol. Chem. 1997, 272, 30061.
The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslGht7c%3D&md5=86b07828312bec56c922e8d6ebbfef54CAS | 9374482PubMed |

[53]  E. Indriolo, G. Na, D. Ellis, D. E. Salt, J. A. Banks, A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 2010, 22, 2045.
A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCjs7%2FO&md5=4e5078455c6557474a9568f71f774703CAS | 20530755PubMed |

[54]  L. Q. Ma, K. M. Komar, C. Tu, W. Zhang, Y. Cai, E. D. Kennelley, A fern that hyperaccumulates arsenic. Nature 2001, 409, 579.
A fern that hyperaccumulates arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVygt70%3D&md5=c3977781288d3feeada34e304ec841adCAS | 11214308PubMed |

[55]  D. Légaré, D. Richard, R. Mukhopadhyay, Y. D. Stierhof, B. P. Rosen, A. Haimeur, B. Papadopoulou, M. Ouellette, The Leishmania ABC protein PGPA is an intracellular metal-thiol transporter ATPase. J. Biol. Chem. 2001, 276, 26301.
The Leishmania ABC protein PGPA is an intracellular metal-thiol transporter ATPase.Crossref | GoogleScholarGoogle Scholar | 11306588PubMed |

[56]  B. Papadopoulou, G. Roy, S. Dey, B. P. Rosen, M. Olivier, M. Ouellette, Gene disruption of the P-glycoprotein-related gene pgpA of Leishmania tarentolae. Biochem. Biophys. Res. Commun. 1996, 224, 772.
Gene disruption of the P-glycoprotein-related gene pgpA of Leishmania tarentolae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1WjtLY%3D&md5=ba09e9ab3c008321a5842f4f453157bcCAS | 8713121PubMed |

[57]  A. C. Coelho, S. M. Beverley, P. C. Cotrim, Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol. Biochem. Parasitol. 2003, 130, 83.
Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms12jsLw%3D&md5=094fc248a5bc26a0b2f786bafbabd1f6CAS | 12946844PubMed |

[58]  A. C. Coelho, E. H. Yamashiro-Kanashiro, S. F. Bastos, R. A. Mortara, P. C. Cotrim, Intracellular location of the ABC transporter PRP1 related to pentamidine resistance in Leishmania major. Mol. Biochem. Parasitol. 2006, 150, 378.
Intracellular location of the ABC transporter PRP1 related to pentamidine resistance in Leishmania major.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOiurbI&md5=72320057b21c0466b166eacf8a3f83cbCAS | 17030436PubMed |

[59]  Z. S. Li, Y. P. Lu, R. G. Zhen, M. Szczypka, D. J. Thiele, P. A. Rea, A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc. Natl. Acad. Sci. USA 1997, 94, 42.
A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFaiuw%3D%3D&md5=e8ec86f23b82fef6a36c8e1c86e9e370CAS | 8990158PubMed |

[60]  Z. S. Li, M. Szczypka, Y. P. Lu, D. J. Thiele, P. A. Rea, The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J. Biol. Chem. 1996, 271, 6509.
The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslGnsrk%3D&md5=91aa6a12dbbb1c66acb906a581549d3fCAS | 8626454PubMed |

[61]  M. Ghosh, J. Shen, B. P. Rosen, Pathways of AsIII detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1999, 96, 5001.
Pathways of AsIII detoxification in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVKmsbY%3D&md5=abed93640a01c933584b8fbc4e3b9f03CAS | 10220408PubMed |

[62]  W. Y. Song, J. Park, D. G. Mendoza-Cozatl, M. Suter-Grotemeyer, D. Shim, S. Hortensteiner, M. Geisler, B. Weder, P. A. Rea, D. Rentsch, J. I. Schroeder, Y. Lee, E. Martinoia, Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA 2010, 107, 21187.
Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyls7fN&md5=77a025b94ac8a7958ccf9cb8f0510c5eCAS | 21078981PubMed |

[63]  E. M. Leslie, Arsenic–glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J. Inorg. Biochem. 2012, 108, 141.
Arsenic–glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1emsLY%3D&md5=e66221956fdd89ab5e6207d5546920c7CAS | 22197475PubMed |

[64]  S. P. Cole, K. E. Sparks, K. Fraser, D. W. Loe, C. E. Grant, G. M. Wilson, R. G. Deeley, Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 1994, 54, 5902.
| 1:CAS:528:DyaK2MXitV2qs7o%3D&md5=7840c7ce64c0818282681dc68863b992CAS | 7954421PubMed |

[65]  L. Vernhet, A. Courtois, N. Allain, L. Payen, J. P. Anger, A. Guillouzo, O. Fardel, Overexpression of the multidrug resistance-associated protein (MRP1) in human heavy metal-selected tumor cells. FEBS Lett. 1999, 443, 321.
Overexpression of the multidrug resistance-associated protein (MRP1) in human heavy metal-selected tumor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1Snsrk%3D&md5=8cdd6020ae65e5b55ced40fdfd1adec2CAS | 10025956PubMed |

[66]  G. Rappa, A. Lorico, R. A. Flavell, A. C. Sartorelli, Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res. 1997, 57, 5232.
| 1:CAS:528:DyaK2sXnslGruro%3D&md5=37a63d83233c877e7f1058ba96d6c962CAS | 9393740PubMed |

[67]  M. Thorsen, Y. Di, C. Tangemo, M. Morillas, D. Ahmadpour, C. Van der Does, A. Wagner, E. Johansson, J. Boman, F. Posas, R. Wysocki, M. J. Tamás, The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol. Biol. Cell 2006, 17, 4400.
The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjt7fP&md5=c686c3a0e05d9ce64139f4dd2698a60aCAS | 16885417PubMed |

[68]  M. Mollapour, P. W. Piper, Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol. Cell. Biol. 2007, 27, 6446.
Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKls7nO&md5=98be67a5a925c28030ab4314da3eb210CAS | 17620418PubMed |

[69]  S. E. Beese, T. Negishi, D. E. Levin, Identification of positive regulators of the yeast Fps1 glycerol channel. PLoS Genet. 2009, 5, e1000738.
Identification of positive regulators of the yeast Fps1 glycerol channel.Crossref | GoogleScholarGoogle Scholar | 19956799PubMed |

[70]  J. Lee, W. Reiter, I. Dohnal, C. Gregori, S. Beese-Sims, K. Kuchler, G. Ammerer, D. E. Levin, MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev. 2013, 27, 2590.
MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFynt7zI&md5=0ef1f67ae01e5b05a3909f917d00332eCAS | 24298058PubMed |

[71]  G. Mandal, M. Sharma, M. Kruse, C. Sander-Juelch, L. A. Munro, Y. Wang, J. V. Vilg, M. J. Tamás, H. Bhattacharjee, M. Wiese, R. Mukhopadhyay, Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol. Microbiol. 2012, 85, 1204.
Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWqs7vE&md5=c4899b9b101771cad29c9b0e6a1a6038CAS | 22779703PubMed |

[72]  P. Bobrowicz, S. Ulaszewski, Arsenical-induced transcriptional activation of the yeast Saccharomyces cerevisiae ACR2 and ACR3 genes requires the presence of the ACR1 gene product. Cell. Mol. Biol. Lett. 1998, 3, 13.
| 1:CAS:528:DyaK1cXjtlSmtrY%3D&md5=300afca7911a5e54eb5d42c38d6e3eddCAS |

[73]  R. Wysocki, P. K. Fortier, E. Maciaszczyk, M. Thorsen, A. Leduc, A. Odhagen, G. Owsianik, S. Ulaszewski, D. Ramotar, M. J. Tamás, Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol. Biol. Cell 2004, 15, 2049.
Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFKjtr0%3D&md5=45d42117a22b105611d751670dbced9aCAS | 14978214PubMed |

[74]  Y. Ilina, E. Sloma, E. Maciaszczyk-Dziubinska, M. Novotny, M. Thorsen, R. Wysocki, M. J. Tamás, Characterization of the DNA binding motif of the arsenic-responsive transcription factor Yap8p. Biochem. J. 2008, 415, 467.
Characterization of the DNA binding motif of the arsenic-responsive transcription factor Yap8p.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CmsrbL&md5=8e34ca9bc033214f5114f3bc3ffeee0bCAS | 18593383PubMed |

[75]  Y. Di, M. J. Tamás, Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway. J. Cell Sci. 2007, 120, 256.
Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFGmsrY%3D&md5=05d8606ea50cbecc5150c5c4ffbcf84dCAS | 17200139PubMed |

[76]  N. V. Kumar, J. Yang, J. K. Pillai, S. Rawat, C. Solano, A. Kumar, M. Grotli, T. L. Stemmler, B. P. Rosen, M. J. Tamás, Arsenic directly binds to and activates the yeast AP-1-like transcription factor Yap8. Mol. Cell. Biol. 2016, 36, 913.
Arsenic directly binds to and activates the yeast AP-1-like transcription factor Yap8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvVekt7Y%3D&md5=d61fcbcda46975ab7ab702b12dfd0f1aCAS |

[77]  J. Wu, B. P. Rosen, Metalloregulated expression of the ars operon. J. Biol. Chem. 1993, 268, 52.
| 1:CAS:528:DyaK3sXjtlyksA%3D%3D&md5=d2ab3a8c06c9e570236b51cdbc83b9f2CAS | 8416957PubMed |

[78]  S. Wyllie, M. L. Cunningham, A. H. Fairlamb, Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J. Biol. Chem. 2004, 279, 39925.
Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVKku7k%3D&md5=f6674be01640b43c491cca8513fe1a8bCAS | 15252045PubMed |

[79]  P. Baiocco, G. Colotti, S. Franceschini, A. Ilari, Molecular basis of antimony treatment in leishmaniasis. J. Med. Chem. 2009, 52, 2603.
Molecular basis of antimony treatment in leishmaniasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1Glurc%3D&md5=5528a27105ea8206798b8878c2d5db25CAS | 19317451PubMed |

[80]  C. Demicheli, F. Frezard, J. B. Mangrum, N. P. Farrell, Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chem. Commun. 2008, 4828.
Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2mtr%2FF&md5=e39fe7e584363708143f096974cd543dCAS |

[81]  T. Jacobson, C. Navarrete, S. K. Sharma, T. C. Sideri, S. Ibstedt, S. Priya, C. M. Grant, P. Christen, P. Goloubinoff, M. J. Tamás, Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. J. Cell Sci. 2012, 125, 5073.
Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitl2hu78%3D&md5=4621db57f387afc6a79ebdfebac48661CAS | 22946053PubMed |

[82]  S. Ibstedt, T. C. Sideri, C. M. Grant, M. J. Tamas, Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress. Biol. Open 2014, 3, 913.
Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsVersw%3D%3D&md5=afcef0b58162325ec91f7c48dbb6638cCAS | 25217615PubMed |

[83]  C. Brochu, A. Haimeur, M. Ouellette, The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite leishmania. Cell Stress Chaperones 2004, 9, 294.
The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite leishmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSgsrvP&md5=942bdfa9d026d10dc6c6a45ef754d30bCAS | 15544167PubMed |

[84]  R. G. Ge, H. Z. Sun, Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc. Chem. Res. 2007, 40, 267.
Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVajtr0%3D&md5=3c3aebd9ee44f14f7512ff72ab0ca27aCAS |

[85]  H. Z. Sun, S. C. Yan, W. S. Cheng, Interaction of antimony tartrate with the tripeptide glutathione – implication for its mode of action. Eur. J. Biochem. 2000, 267, 5450.
Interaction of antimony tartrate with the tripeptide glutathione – implication for its mode of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVentrg%3D&md5=2991520260c47229314563c6768ada34CAS |

[86]  S. C. Yan, K. Y. Ding, L. Zhang, H. Z. Sun, Complexation of antimony(III) by trypanothione. Angew. Chem. Int. Ed. 2000, 39, 4260.
Complexation of antimony(III) by trypanothione.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFCgsLg%3D&md5=18bfa757d24b0529f97c74c0e5ccec9fCAS |

[87]  S. R. Talemi, T. Jacobson, V. Garla, C. Navarrete, A. Wagner, M. J. Tamás, J. Schaber, Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast. Mol. Microbiol. 2014, 92, 1343.
Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptlams74%3D&md5=5132d830de5502fd0abf0ff4fc49b3b0CAS | 24798644PubMed |

[88]  M. Thorsen, G. Lagniel, E. Kristiansson, C. Junot, O. Nerman, J. Labarre, M. J. Tamás, Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol. Genomics 2007, 30, 35.
Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlKqsL8%3D&md5=8d277c252edd26754c6f5bb6521faa71CAS | 17327492PubMed |

[89]  R. Mukhopadhyay, S. Dey, N. Xu, D. Gage, J. Lightbody, M. Ouellette, B. P. Rosen, Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc. Natl. Acad. Sci. USA 1996, 93, 10383.
Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslGku70%3D&md5=1830d8767ad04df653e2ac1b2ab4ee7eCAS | 8816809PubMed |

[90]  D. Légaré, B. Papadopoulou, G. Roy, R. Mukhopadhyay, A. Haimeur, S. Dey, K. Grondin, C. Brochu, B. P. Rosen, M. Ouellette, Efflux systems and increased trypanothione levels in arsenite-resistant Leishmania. Exp. Parasitol. 1997, 87, 275.
Efflux systems and increased trypanothione levels in arsenite-resistant Leishmania.Crossref | GoogleScholarGoogle Scholar | 9371094PubMed |

[91]  S. Detke, K. Katakura, K. P. Chang, DNA amplification in arsenite-resistant Leishmania. Exp. Cell Res. 1989, 180, 161.
DNA amplification in arsenite-resistant Leishmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovFyjsA%3D%3D&md5=4708f199c2825302c0d3990cc9d962aaCAS | 2909386PubMed |

[92]  M. Ouellette, F. Fase-Fowler, P. Borst, The amplified H circle of methotrexate-resistant Leishmania tarentolae contains a novel P-glycoprotein gene. EMBO J. 1990, 9, 1027.
| 1:CAS:528:DyaK3cXlsVKgsrs%3D&md5=dc0a64427725e3227e87959a438a8cf2CAS | 1969794PubMed |

[93]  R. Wysocki, S. Clemens, D. Augustyniak, P. Golik, E. Maciaszczyk, M. J. Tamás, D. Dziadkowiec, Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem. Biophys. Res. Commun. 2003, 304, 293.
Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWnsbo%3D&md5=4e0ae2b2c588e8f54607c14aaa59c259CAS | 12711313PubMed |

[94]  A. Albores, J. Koropatnick, M. G. Cherian, A. J. Zelazowski, Arsenic induces and enhances rat hepatic metallothionein production in vivo. Chem. Biol. Interact. 1992, 85, 127.
Arsenic induces and enhances rat hepatic metallothionein production in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1agur8%3D&md5=d08265af5b173c82270b8b1c3c63033aCAS | 1493605PubMed |

[95]  J. Liu, Y. Liu, R. A. Goyer, W. Achanzar, M. P. Waalkes, Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol. Sci. 2000, 55, 460.
Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsl2qsbg%3D&md5=aee2d99ce731c258c440991bad2b77eaCAS | 10828279PubMed |

[96]  T. T. Ngu, M. J. Stillman, Arsenic binding to human metallothionein. J. Am. Chem. Soc. 2006, 128, 12473.
Arsenic binding to human metallothionein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFaiur8%3D&md5=5f0641c3a014fdb3e08d8080500b1b24CAS | 16984198PubMed |

[97]  A. V. Hirner, A. W. Rettenmeier, Methylated metal(loid) species in humans. Met. Ions Life Sci. 2010, 7, 465.
Methylated metal(loid) species in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVegsrY%3D&md5=2497e4b68428429e1545b9604207ce51CAS | 20877816PubMed |

[98]  C. M. Schlebusch, L. M. Gattepaille, K. Engstrom, M. Vahter, M. Jakobsson, K. Broberg, Human adaptation to arsenic-rich environments. Mol. Biol. Evol. 2015, 32, 1544.
Human adaptation to arsenic-rich environments.Crossref | GoogleScholarGoogle Scholar | 25739736PubMed |