Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Heteroagglomeration of nanosilver with colloidal SiO2 and clay

Sébastien Maillette A , Caroline Peyrot A , Tapas Purkait B , Muhammad Iqbal B , Jonathan G. C. Veinot B and Kevin J. Wilkinson A C
+ Author Affiliations
- Author Affiliations

A Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, CP 6128 Succursale Centre-ville, Montreal, QC H3C 3J7, Canada.

B Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.

C Corresponding author. Email: kj.wilkinson@umontreal.ca

Environmental Chemistry 14(1) 1-8 https://doi.org/10.1071/EN16070
Submitted: 25 March 2016  Accepted: 13 July 2016   Published: 15 August 2016

Journal Compilation © CSIRO Publishing 2017 Open Access CC BY-NC-ND

Environmental context. The fate of nanomaterials in the environment is related to their colloidal stability. Although numerous studies have examined their homoagglomeration, their low concentration and the presence of high concentrations of natural particles implies that heteroagglomeration rather than homoagglomeration is likely to occur under natural conditions. In this paper, two state-of-the art analytical techniques were used to identify the conditions under which nanosilver was most likely to form heteroagglomerates in natural waters.

Abstract. The environmental risk of nanomaterials will depend on their persistence, mobility, toxicity and bioaccumulation. Each of these parameters is related to their fate (especially dissolution, agglomeration). The goal of this paper was to understand the heteroagglomeration of silver nanoparticles in natural waters. Two small silver nanoparticles (nAg, ~3 nm; polyacrylic acid- and citrate-stabilised) were covalently labelled with a fluorescent dye and then mixed with colloidal silicon oxides (SiO2, ~18.5 nm) or clays (~550 nm SWy-2 montmorillonite). Homo- and heteroagglomeration of the nAg were first studied in controlled synthetic waters that were representative of natural fresh waters (50 μg Ag L–1; pH 7.0; ionic strength 10–7 to 10–1 M Ca) by following the sizes of the nAg by fluorescence correlation spectroscopy. The polyacrylic acid-coated nanosilver was extremely stable under all conditions, including in the presence of other colloids and at high ionic strengths. However, the citrate-coated nanosilver formed heteroaggregates in presence of both colloidal SiO2 and clay particles. Nanoparticle surface properties appeared to play a key role in controlling the physicochemical stability of the nAg. For example, the polyacrylic acid stabilized nAg-remained extremely stable in the water column, even under conditions for which surrounding colloidal particles were agglomerating. Finally, enhanced dark-field microscopy was then used to further characterise the heteroagglomeration of a citrate-coated nAg with suspensions of colloidal clay, colloidal SiO2 or natural (river) water.

Additional keywords: agglomeration, dark-field microscopy, fluorescence correlation spectroscopy, hyperspectral imaging, silver nanoparticle.


References

[1]  J. M. Zook, M. D. Halter, D. Cleveland, S. E. Long, Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J. Nanopart. Res. 2012, 14, 1165.
Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity.Crossref | GoogleScholarGoogle Scholar |

[2]  S. Elzey, V. H. Grassian, Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J. Nanopart. Res. 2010, 12, 1945.
Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFOru7g%3D&md5=392ed0c5a344bc8e46bdca4fc970b22cCAS |

[3]  M. Baalousha, Y. Nur, I. Roemer, M. Tejamaya, J. R. Lead, Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci. Total Environ. 2013, 454–455, 119.
Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 23542485PubMed |

[4]  A. Bradford, R. D. Handy, J. W. Readman, A. Atfield, M. Muehling, Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ. Sci. Technol. 2009, 43, 4530.
Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1SgurY%3D&md5=aaaecb16162abf8ddee02d6089f43c86CAS | 19603673PubMed |

[5]  A. M. El Badawy, K. G. Scheckel, M. Suidan, T. Tolaymat, The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. 2012, 429, 325.
The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Cnu7g%3D&md5=2bebfde47f29c7b8dd63773a9940e46eCAS | 22578844PubMed |

[6]  O. Furman, S. Usenko, B. L. T. Lau, Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environ. Sci. Technol. 2013, 47, 1349.
| 1:CAS:528:DC%2BC3sXkt12itw%3D%3D&md5=3a104ab0347ab4967022769dc64578b6CAS | 23298221PubMed |

[7]  X. Li, J. J. Lenhart, Aggregation and dissolution of silver nanoparticles in natural surface water. Environ. Sci. Technol. 2012, 46, 5378.
Aggregation and dissolution of silver nanoparticles in natural surface water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFemsLk%3D&md5=eb7ad48da17a9df59ab79a06b0cdfc8aCAS | 22502776PubMed |

[8]  X. Li, J. J. Lenhart, H. W. Walker, Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 2012, 28, 1095.
Aggregation kinetics and dissolution of coated silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsLvL&md5=85dc2b2df8de56622c6ee69e2b7067d1CAS | 22149007PubMed |

[9]  J. Buffle, K. J. Wilkinson, S. Stoll, M. Filella, J. W. Zhang, A generalized description of aquatic colloidal interactions: the three-colloidal-component approach. Environ. Sci. Technol. 1998, 32, 2887.
A generalized description of aquatic colloidal interactions: the three-colloidal-component approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVyqt7w%3D&md5=55f16ae7b3402ddbec23175c1de9f2f4CAS |

[10]  L. Li, G. Hartmann, M. Doblinger, M. Schuster, Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ. Sci. Technol. 2013, 47, 7317.
| 1:CAS:528:DC%2BC3sXptFentL8%3D&md5=2792a89e735acdbdab9d1e20685dcedaCAS | 23750458PubMed |

[11]  H. F. Krug, Nanosafety research – are we on the right track?. Angew. Chem. Int. Ed. 2014, 53, 12304.
| 1:CAS:528:DC%2BC2cXhvVGksLzP&md5=00cb139b2840c6c0bbb1654e1c80493eCAS |

[12]  J. Buffle, H. P. v. Leeuwen, Environmental Particles, Vol. 1 1992 (Lewis Publishers, Inc.).

[13]  M. Hadioui, S. Leclerc, K. J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15.
Multimethod quantification of Ag+ release from nanosilver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1WjurY%3D&md5=9c11d8234f3a624fedb9c720adcabcdbCAS | 23597981PubMed |

[14]  I. G. Droppo, G. G. Leppard, S. N. Liss, T. G. Milligan, Flocculation in Natural and Engineered Environmental Systems 2005 (CRC Press: New York, NY).

[15]  Y. Tian, B. Gao, C. Silvera-Batista, K. J. Ziegler, Transport of engineered nanoparticles in saturated porous media. J. Nanopart. Res. 2010, 12, 2371.
Transport of engineered nanoparticles in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCju7%2FI&md5=fcee0d94a7780f6046218142b73430eeCAS |

[16]  M. Therezien, A. Thill, M. R. Wiesner, Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Sci. Total Environ. 2014, 485–486, 309.
Importance of heterogeneous aggregation for NP fate in natural and engineered systems.Crossref | GoogleScholarGoogle Scholar | 24727597PubMed |

[17]  D. Zhou, A. I. Abdel-Fattah, A. A. Keller, Clay particles destabilize engineered nanoparticles in aqueous environments. Environ. Sci. Technol. 2012, 46, 7520.
Clay particles destabilize engineered nanoparticles in aqueous environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFartLc%3D&md5=78e3b8c01cfb998c3ca856d7ca482f50CAS | 22721423PubMed |

[18]  J. Labille, C. Harns, J. Y. Bottero, J. A. Brant, Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ. Sci. Technol. 2015, 49, 6608.
Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgsbw%3D&md5=0d0f21796e208052e9ddcd077ddb33ccCAS | 25913600PubMed |

[19]  H. Khanh An, J. M. McCaffery, K. L. Chen, Heteroaggregation reduces antimicrobial activity of silver nanoparticles: evidence for nanoparticle–cell proximity effects. Environ. Sci. Technol. Letters 2014, 1, 361.

[20]  J. Zhao, F. Liu, Z. Wang, X. Cao, B. Xing, Heteroaggregation of graphene oxide with minerals in aqueous phase. Environ. Sci. Technol. 2015, 49, 2849.
| 1:CAS:528:DC%2BC2MXhsVCgur0%3D&md5=cba2e26031cae0808d93a647fe57e639CAS | 25614925PubMed |

[21]  H. An Khanh, J. M. McCaffery, K. L. Chen, Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles: rates and mechanisms. Environ. Sci. Technol. 2012, 46, 5912.
Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles: rates and mechanisms.Crossref | GoogleScholarGoogle Scholar |

[22]  A. Praetorius, J. Labille, M. Scheringer, A. Thill, K. Hungerbühler, J.-Y. Bottero, Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ. Sci. Technol. 2014, 48, 10690.
Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKms7bM&md5=54f7bc2dddc1fcb58210b446567ab094CAS | 25127331PubMed |

[23]  J. Labille, C. Harns, J. -Y. Bottero, J. Brant, Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ. Sci. Technol. 2015, 49, 6608.
Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgsbw%3D&md5=0d0f21796e208052e9ddcd077ddb33ccCAS | 25913600PubMed |

[24]  K. Starchev, K. J. Wilkinson, J. Buffle, Application of FCS to the study of environmental systems, in Fluorescence Correlation Spectroscopy. Theory and Applications (Eds R. Rigler, E. L. Elson) 2001, Vol. 5, pp. 251–275 (Springer: Berlin).

[25]  A. Pramanik, J. Widengren, Fluorescence correlation spectroscopy (FCS), in Encyclopedia of Molecular Cell Biology and Molecular Medicine (Ed. R. A. Meyers) 2004, pp. 461–500 (Wiley-VCH).

[26]  G. A. Roth, S. Tahiliani, N. M. Neu-Baker, S. A. Brenner, Hyperspectral microscopy as an analytical tool for nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7, 565.

[27]  T.-O. Peulen, K. J. Wilkinson, Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011, 45, 3367.
Diffusion of nanoparticles in a biofilm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVehsrY%3D&md5=f49c8f408f5864cc6dc19489bedcd41aCAS | 21434601PubMed |

[28]  A. Tcherniak, A. Prakash, J. T. Mayo, V. L. Colvin, S. Link, Fluorescence correlation spectroscopy of magnetite nanocrystal diffusion. J. Phys. Chem. C 2009, 113, 844.
Fluorescence correlation spectroscopy of magnetite nanocrystal diffusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Ol&md5=9df422faf88491ece89dc20a229c07f2CAS |

[29]  H. Holthoff, A. Schmitt, Fernandez Barbero, A.; Borkovec, M.; Cabrerizo Vilchez, M. A.; Schurtenberger, P.; Hidalgo Alvarez, R., Measurement of absolute coagulation rate constants for colloidal particles: comparison of single and multiparticle light-scattering techniques. J. Colloid Interface Sci. 1997, 192, 463.
Fernandez Barbero, A.; Borkovec, M.; Cabrerizo Vilchez, M. A.; Schurtenberger, P.; Hidalgo Alvarez, R., Measurement of absolute coagulation rate constants for colloidal particles: comparison of single and multiparticle light-scattering techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFGksLw%3D&md5=cccb2986ec7793a774875201e5467697CAS | 9367570PubMed |

[30]  S. Patskovsky, E. Bergeron, D. Rioux, M. Simard, M. Meunier, Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells. Analyst 2014, 139, 5247.
Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1amsbjF&md5=cec82ec9ae5b405ddfb9730f01ac7bbfCAS | 25133743PubMed |

[31]  M. Mortimer, A. Gogos, N. Bartolome, A. Kahru, T. D. Bucheli, V. I. Slaveykova, Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environ. Sci. Technol. 2014, 48, 8760.
Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSrtrjF&md5=18f33ce18a3277619e2967da8b7f9c79CAS | 25000358PubMed |

[32]  P. O. Gendron, F. Avaltroni, K. J. Wilkinson, Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient–nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 2008, 18, 1093.
Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient–nuclear magnetic resonance and fluorescence correlation spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWjt7rN&md5=f6d18f404c95890a69b9e253de8df0d0CAS | 18431548PubMed |

[33]  A. R. Badireddy, M. R. Wiesner, J. Liu, Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced dark-field microscopy. Environ. Sci. Technol. 2012, 46, 10081.
| 1:CAS:528:DC%2BC38Xht1ajsrzE&md5=6e24630db32c8abad981be4737ba50d0CAS | 22906208PubMed |

[34]  X. Liu, M. Atwater, J. Wang, Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3.
Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOksr0%3D&md5=31f2bbf6c64fdcaef4bb4b3f2c6b09adCAS | 16997536PubMed |

[35]  L. Diaz, C. Peyrot, K. J. Wilkinson, Characterization of polymeric nanomaterials using analytical ultracentrifugation. Environ. Sci. Technol. 2015, 49, 7302.
Characterization of polymeric nanomaterials using analytical ultracentrifugation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFGksrs%3D&md5=d13a510c7b72fef83506a2a58f9c515fCAS | 25988704PubMed |

[36]  A. R. Petosa, C. Oehl, F. Rajput, N. Tufenkji, Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters. Water Res. 2013, 47, 5889.
Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SjtLbK&md5=248af5ed77d3d665099c8efe8f7dc8c5CAS | 23916155PubMed |

[37]  R. F. Domingos, C. Peyrot, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environ. Chem. 2010, 7, 61.
Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLg%3D&md5=4e1441b0aa8939112841612f2216fd4eCAS |

[38]  S. Leclerc, K. J. Wilkinson, Bioaccumulation of nanosilver by Chlamydomonas reinhardtii – nanoparticle or the free ion?. Environ. Sci. Technol. 2014, 48, 358.
Bioaccumulation of nanosilver by Chlamydomonas reinhardtii – nanoparticle or the free ion?.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2mtL%2FO&md5=7fd03d15999d7461cf35ccbc5a4e1fbeCAS | 24320028PubMed |

[39]  H. Weinkauf, B. F. Brehm-Stecher, Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae. Biotechnol. J. 2009, 4, 871.
Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1aqsLY%3D&md5=32ea5a23acbd265d2a76b4796777c3b0CAS | 19492326PubMed |

[40]  C. Sönnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741.
A molecular ruler based on plasmon coupling of single gold and silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 15908940PubMed |

[41]  J. T. K. Quik, D. van de Meent, A. A. Koelmans, Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: a theoretical analysis. Water Res. 2014, 62, 193.
Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: a theoretical analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WktL3P&md5=99e28f3a878cfc5068fac3bb1d1db81dCAS |

[42]  A. C. Johnson, M. D. Jurgens, A. J. Lawlor, I. Cisowska, R. J. Williams, Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants. Chemosphere 2014, 112, 49.
Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqsbnK&md5=86744717bdb29837a292dc24558e703bCAS | 25048887PubMed |