Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

An integrated study of the chemical composition of Antarctic aerosol to investigate natural and anthropogenic sources

E. Barbaro A B G , R. Zangrando B , T. Kirchgeorg A , A. Bazzano C , S. Illuminati D , A. Annibaldi D , S. Rella E , C. Truzzi D , M. Grotti C , A. Ceccarini F , C. Malitesta E , G. Scarponi D and A. Gambaro A B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’Foscari, Via Torino 155, 30172 Venice, Italy.

B Institute for the Dynamics of Environmental Processes, Consiglio Nazionale delle Ricerche (CNR), Via Torino 155, 30172 Venice, Italy.

C Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy.

D Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.

E Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.

F Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.

G Corresponding author. Email: barbaro@unive.it

Environmental Chemistry 13(5) 867-876 https://doi.org/10.1071/EN16056
Submitted: 8 March 2016  Accepted: 22 May 2016   Published: 22 June 2016

Environmental context. Owing to its remoteness, Antarctica is an excellent natural laboratory for conducting studies on the behavior of marine aerosols and for monitoring the impact of global human activities. The aim of this study is to provide an extensive chemical characterization of Antarctic aerosol and to investigate its sources. A distinction among anthropogenic, crustal, and biogenic sources was defined using several chemical markers.

Abstract. During the 2010–11 austral summer, an aerosol sampling campaign was carried out at a coastal Antarctic site (Terra Nova Bay, Victoria Land). In this work, previously published data about water-soluble organic compounds and major and trace elements were merged with novel measurements of major ions, carboxylic acids and persistent organic pollutants (polychlorobiphenyls, polycyclic aromatic hydrocarbons, polychlorinated naphthalenes, polybrominated diphenylethers and organochlorine pesticides) in order to provide a chemical characterisation of Antarctic aerosol and to investigate its sources. The persistent organic pollutants were determined using a high-volume sampler, able to collect both particulate and gaseous fractions, whereas remaining compounds were determined by performing an aerosol size fractionation with a PM10 cascade impactor. Ionic species represented 58 % (350 ng m–3) of the sum of concentrations of all detected compounds (596 ng m–3) in our Antarctic PM10 aerosol samples due to natural emission. Trace concentrations of persistent organic pollutants highlighted that the occurrence of these species can be due to long-range atmospheric transport or due to the research base. Factor analysis was applied to the dataset obtained from the samples collected with the PM10 sampler in order to make a distinction between anthropogenic, crustal and biogenic sources using specific chemical markers.

Additional keywords: amino acids, Antarctica, ions, carboxylic acids, metals, POPs, sugars.


References

[1]  I. Fattori, S. Becagli, S. Bellandi, E. Castellano, M. Innocenti, A. Mannini, M. Severi, V. Vitale, R. Udisti, Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C, Antarctica. J. Environ. Monit. 2005, 7, 1265.
Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers7zK&md5=4369c19b45ba15c871ff9346d6f2820cCAS | 16307082PubMed |

[2]  R. Udisti, U. Dayan, S. Becagli, M. Busetto, D. Frosini, M. Legrand, F. Lucarelli, S. Preunkert, M. Severi, R. Traversi, V. Vitale, Sea-spray aerosol in central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions. Atmos. Environ. 2012, 52, 109.
Sea-spray aerosol in central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVaju7s%3D&md5=8d02afacc5137b51baadfa7bae6da48bCAS |

[3]  K. Budhavant, P. D. Safai, P. S. P. Rao, Sources and elemental composition of summer aerosols in the Larsemann Hills (Antarctica). Environ. Sci. Pollut. Res. Int. 2015, 22, 2041.
Sources and elemental composition of summer aerosols in the Larsemann Hills (Antarctica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGis7zL&md5=628c9e509fc23c47b61aec70b2b42318CAS | 25167815PubMed |

[4]  I. Oyabu, Y. Iizuka, R. Uemura, T. Miyake, M. Hirabayashi, H. Motoyama, T. Sakurai, T. Suzuki, T. Hondoh, Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji ice core, inland Antarctica. J. Geophys. Res., D, Atmospheres 2014, 119, 14 045.
Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji ice core, inland Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKmtL0%3D&md5=c76e46d0c6afee618cbfff5bc6bebfb2CAS |

[5]  K. Teinilä, A. Frey, R. Hillamo, H. C. Tuelp, R. Weller, A study of the sea-salt chemistry using size-segregated aerosol measurements at coastal Antarctic station Neumayer. Atmos. Environ. 2014, 96, 11.
A study of the sea-salt chemistry using size-segregated aerosol measurements at coastal Antarctic station Neumayer.Crossref | GoogleScholarGoogle Scholar |

[6]  R. Hillamo, I. Allegrini, R. Sparapani, V. M. Kerminen, Mass size distributions and precursor gas concentrations of major inorganic ions in Antarctic aerosol. Int. J. Environ. Anal. Chem. 1998, 71, 353.
Mass size distributions and precursor gas concentrations of major inorganic ions in Antarctic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFGjtL4%3D&md5=5dd800085f84ddc0a71b444c26fe356fCAS |

[7]  S. Illuminati, A. Annibaldi, C. Truzzi, G. Libani, C. Mantini, G. Scarponi, Determination of water-soluble, acid-extractable and inert fractions of Cd, Pb and Cu in Antarctic aerosol by square-wave anodic stripping voltammetry after sequential extraction and microwave digestion. J. Electroanal. Chem. 2015, 755, 182.
Determination of water-soluble, acid-extractable and inert fractions of Cd, Pb and Cu in Antarctic aerosol by square-wave anodic stripping voltammetry after sequential extraction and microwave digestion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlektbzM&md5=4a4bf5182503894d83eef5bbcc435742CAS |

[8]  A. Annibaldi, C. Truzzi, S. Illuminati, E. Bassotti, G. Scarponi, Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by squarewave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land). Anal. Bioanal. Chem. 2007, 387, 977.
Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by squarewave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wiurw%3D&md5=f07f7a48f49707b59562d1bb420d5c70CAS | 17200845PubMed |

[9]  G. Toscano, A. Gambaro, I. Moret, G. Capodaglio, C. Turetta, P. Cescon, Trace metals in aerosol at Terra Nova Bay, Antarctica. J. Environ. Monit. 2005, 7, 1275.
Trace metals in aerosol at Terra Nova Bay, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers73O&md5=0126ab2303eeeec83e4bb9a855ce7911CAS | 16307083PubMed |

[10]  C. Barbante, C. Turetta, G. Capodaglio, G. Scarponi, Recent decrease in the lead concentration of Antarctic snow. Int. J. Environ. Anal. Chem. 1997, 68, 457.
Recent decrease in the lead concentration of Antarctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsV2lsrc%3D&md5=36964fbb4281a547ad974e2a4ebb431cCAS |

[11]  G. Scarponi, C. Barbante, C. Turetta, A. Gambaro, P. Cescon, Chemical contamination of Antarctic snow: the case of lead. Microchem. J. 1997, 55, 24.
Chemical contamination of Antarctic snow: the case of lead.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVyqu7g%3D&md5=a4bbf1ea8c64579e843f69e2c008bab7CAS |

[12]  C. Barbante, C. Turetta, A. Gambaro, G. Capodaglio, G. Scarponi, Sources and origins of aerosols reaching Antarctica as revealed by lead concentration profiles in shallow snow. Ann. Glaciol. 1998, 27, 674.
| 1:CAS:528:DyaK1MXit1Oks7o%3D&md5=3f0329176a91ec260522434783d7afa5CAS |

[13]  G. Xu, Y. Gao, Q. Lin, W. Li, L. Chen, Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer. J. Geophys. Res., D, Atmospheres 2013, 118, 13 303.
Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVSqtLbE&md5=d99e9e5c297afdd978b2a76e7ffb3441CAS |

[14]  R. Piazza, A. Gambaro, E. Argiriadis, M. Vecchiato, S. Zambon, P. Cescon, C. Barbante, Development of a method for simultaneous analysis of PCDDs, PCDFs, PCBs, PBDEs, PCNs and PAHs in Antarctic air. Anal. Bioanal. Chem. 2013, 405, 917.
Development of a method for simultaneous analysis of PCDDs, PCDFs, PCBs, PBDEs, PCNs and PAHs in Antarctic air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWhs7%2FF&md5=3c1ac8b33b12406bad6d2f60445e9681CAS | 23073699PubMed |

[15]  E. Wolff, J. S. Hall, R. Mulvaney, E. C. Pasteur, D. Wagenbach, M. Legrand, Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica. J. Geophys. Res. 1998, 103, 11 057.
Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslanu7Y%3D&md5=27e80bd64c9a79f9943b183243514906CAS |

[16]  N. Kehrwald, R. Zangrando, P. Gabrielli, J. Jaffrezo, C. Boutron, C. Barbante, A. Gambaro, Levoglucosan as a specific marker of fire events in Greenland snow. Tellus B Chem. Phys. Meterol. 2012, 64, 18 196.
Levoglucosan as a specific marker of fire events in Greenland snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFWms7Y%3D&md5=960a790b5866ca2d9ed1a8175d9402b9CAS |

[17]  R. Fuoco, S. Giannarelli, M. Onor, S. Ghimenti, C. Abete, M. Termine, S. Francesconi, A snow/firn four-century record of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) at Talos Dome (Antarctica). Microchem. J. 2012, 105, 133.
A snow/firn four-century record of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) at Talos Dome (Antarctica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCqsrfJ&md5=87d3924a198e32dd72d53a2c8794128eCAS |

[18]  A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, C. Barbante, Seasonality of halogen deposition in polar snow and ice. Atmos. Chem. Phys. 2014, 14, 9613.
Seasonality of halogen deposition in polar snow and ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs12jsbbJ&md5=0a2ab29df8294a6252cf67416215df01CAS |

[19]  M. Vecchiato, E. Argiriadis, S. Zambon, C. Barbante, G. Toscano, A. Gambaro, R. Piazza, Persistent organic pollutants (POPs) in Antarctica: occurrence in continental and coastal surface snow. Microchem. J. 2015, 119, 75.
Persistent organic pollutants (POPs) in Antarctica: occurrence in continental and coastal surface snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWju7fO&md5=cb58b6ce8170592444f00dd359e6c17eCAS |

[20]  A. Bazzano, F. Soggia, M. Grotti, Source identification of atmospheric particle-bound metals at Terra Nova Bay, Antarctica. Environ. Chem. 2015, 12, 245.
Source identification of atmospheric particle-bound metals at Terra Nova Bay, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVWnu78%3D&md5=4199aac98044ae5f1b918a4964125721CAS |

[21]  S. Rella, C. Malitesta, X-ray photoelectron spectroscopy characterization of aerosol particles in Antarctica. Antarct. Sci. 2015, 27, 493.
X-ray photoelectron spectroscopy characterization of aerosol particles in Antarctica.Crossref | GoogleScholarGoogle Scholar |

[22]  E. Barbaro, R. Zangrando, M. Vecchiato, R. Piazza, W. R. L. Cairns, G. Capodaglio, C. Barbante, A. Gambaro, Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol. Atmos. Chem. Phys. 2015, 15, 5457.
Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptlCgsLc%3D&md5=b34372accd7a6bc9a787166cc151a8c5CAS |

[23]  E. Barbaro, T. Kirchgeorg, R. Zangrando, M. Vecchiato, R. Piazza, C. Barbante, A. Gambaro, Sugars in Antarctic aerosol. Atmos. Environ. 2015, 118, 135.
Sugars in Antarctic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVagtb7J&md5=6d272e937b021bd4cd7ff52045e046b8CAS |

[24]  R. Zangrando, E. Barbaro, M. Vecchiato, N. M. Kehrwald, C. Barbante, A. Gambaro, Levoglucosan and phenols in marine, coastal and inland Antarctic aerosols. Sci. Total Environ. 2016, 544, 606.
Levoglucosan and phenols in marine, coastal and inland Antarctic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVSgs7fI&md5=049e3fe858d83131ff672afbfada0eebCAS | 26674690PubMed |

[25]  R. Zangrando, E. Barbaro, P. Zennaro, S. Rossi, N. M. Kehrwald, J. Gabrieli, C. Barbante, A. Gambaro, Molecular markers of biomass burning in Arctic aerosols. Environ. Sci. Technol. 2013, 47, 8565.
| 1:CAS:528:DC%2BC3sXhtVahtbzP&md5=14717468de9110622a3893e456435535CAS | 23808421PubMed |

[26]  A. Annibaldi, C. Truzzi, S. Illuminati, G. Scarponi, Direct gravimetric determination of aerosol mass concentration in central Antarctica. Anal. Chem. 2011, 83, 8046.
Direct gravimetric determination of aerosol mass concentration in central Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1aitrrF&md5=3f3fe83c6caa81e1c8f8d303ff802ff8CAS |

[27]  C. Truzzi, L. Lambertucci, S. Illuminati, A. Annibaldi, G. Scarponi, Direct gravimetric measurements of the mass of the Antarctic aerosol collected by high-volume sampler: PM10 summer seasonal variation at Terra Nova Bay. Ann. Chim. 2005, 95, 867.
Direct gravimetric measurements of the mass of the Antarctic aerosol collected by high-volume sampler: PM10 summer seasonal variation at Terra Nova Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCrurc%3D&md5=1d3031c8358318475ace0ef0f184c051CAS | 16398350PubMed |

[28]  A. Dreyer, I. Weinberg, C. Temme, R. Ebinghaus, Polyfluorinatedcompounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution. Environ. Sci. Technol. 2009, 43, 6507.
Polyfluorinatedcompounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSmsLc%3D&md5=8ef571ec5c2874a99b83782d9fb7555aCAS | 19764209PubMed |

[29]  H. Bauer, M. Claeys, R. Vermeylen, E. Schueller, G. Weinke, A. Berger, H. Puxbaum, Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 2008, 42, 588.
Arabitol and mannitol as tracers for the quantification of airborne fungal spores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltV2qtQ%3D%3D&md5=48baa3da387849857514714a06040622CAS |

[30]  G. S. Tyndall, A. R. Ravishankara, Atmospheric oxidation of reduced sulfur species. Int. J. Chem. Kinet. 1991, 23, 483.
Atmospheric oxidation of reduced sulfur species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksFyjsL0%3D&md5=92ffa40b8d918252583412db24f7d4b5CAS |

[31]  M. Legrand, F. Ducroz, D. Wagenbach, R. Mulvaney, J. Hall, Ammonium in coastal Antarctic aerosol and snow: role of polar ocean and penguin emissions. J. Geophys. Res., D, Atmospheres 1998, 103, 11 043.
Ammonium in coastal Antarctic aerosol and snow: role of polar ocean and penguin emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslantLs%3D&md5=c0bae198ff0a4eab0fc8d30c6272ad59CAS |

[32]  T. D. Blackall, L. J. Wilson, M. R. Theobald, C. Milford, E. Nemitz, J. Bull, P. J. Bacon, K. C. Hamer, S. Wanless, M. A. Sutton, Ammonia emissions from seabird colonies. Geophys. Res. Lett. 2007, 34, L1080.

[33]  J. Schmale, J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, C. F. Braban, Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmos. Chem. Phys. 2013, 13, 8669.
Sub-Antarctic marine aerosol: dominant contributions from biogenic sources.Crossref | GoogleScholarGoogle Scholar |

[34]  T. D. Jickells, S. D. Kelly, A. R. Baker, K. Biswas, P. F. Dennis, L. J. Spokes, M. Witt, S. G. Yeatman, Isotopic evidence for a marine ammonia source. Geophys. Res. Lett. 2003, 30, 137.

[35]  M. T. Johnson, T. G. Bell, Coupling between dimethylsulfide emissions and the ocean–atmosphere exchange of ammonia. Environ. Chem. 2008, 5, 259.
Coupling between dimethylsulfide emissions and the ocean–atmosphere exchange of ammonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLnL&md5=f51ce4d89925fda4092494401191e874CAS |

[36]  D. M. Murphy, D. S. Thomson, Halogen ions and NO+ in the mass spectra of aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett. 2000, 27, 3217.
Halogen ions and NO+ in the mass spectra of aerosols in the upper troposphere and lower stratosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFCitLg%3D&md5=a203e65dd21abf869e6a538ce2dfd5c3CAS |

[37]  H. Zhuang, C. K. Chan, M. Fang, A. S. Wexler, Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmos. Environ. 1999, 33, 4223.
Formation of nitrate and non-sea-salt sulfate on coarse particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFyisb0%3D&md5=ac225ba33bcb41e0e94770d8c4b9e94eCAS |

[38]  A. Virkkula, K. Teinila, R. Hillamo, V. M. Kerminen, S. Saarikoski, M. Aurela, J. Viidanoja, J. Paatero, I. K. Koponen, M. Kulmala, Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site. Atmos. Chem. Phys. 2006, 6, 3407.
Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7nP&md5=04102741185acf9b82b7ed934c1e9a5aCAS |

[39]  K. Kawamura, M. Narukawa, S.-M. Li, L. A. Barrie, Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic. J. Geophys. Res., D, Atmospheres 2007, 112, D1030.

[40]  K. Kawamura, R. Semere, Y. Imai, Y. Fujii, M. Hayashi, Water-soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res., D, Atmospheres 1996, 101, 18 721.
Water-soluble dicarboxylic acids and related compounds in Antarctic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslKltLc%3D&md5=38f0a74ffc85f5234f411ee9e3491ee7CAS |

[41]  H. B. Wang, K. Kawamura, K. Yamazaki, Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean. J. Atmos. Chem. 2006, 53, 43.
Water-soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKjsbg%3D&md5=d901c1dc9caf518b4cdb29921c17b218CAS |

[42]  K. Kawamura, F. Sakaguchi, Molecular distributions of water-soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res., D, Atmospheres 1999, 104, 3501.
Molecular distributions of water-soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFWjs7o%3D&md5=4ebeb84f47b988cbb371457e7b202e18CAS |

[43]  K. Matsumoto, I. Nagao, H. Tanaka, H. Miyaji, T. Iida, Y. Ikebe, Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the north-west Pacific Ocean. Atmos. Environ. 1998, 32, 1931.
Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the north-west Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVShsbw%3D&md5=268d65f4f197323fc02a3a5094adb206CAS |

[44]  P. Fu, K. Kawamura, K. Usukura, K. Miura, Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Mar. Chem. 2013, 148, 22.
Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlags7g%3D&md5=d5426a23e6ae4a61ac7a0a8adff2e4e1CAS |

[45]  R. Sempere, K. Kawamura, Trans-hemispheric contribution of C2–C10 alpha, omega-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochem. Cycles 2003, 17, 1069.

[46]  K. Kawamura, H. Kasukabe, L. A. Barrie, Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos. Environ. 1996, 30, 1709.
Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVKmtbw%3D&md5=ba7731df885b15003975d33f61e3e825CAS |

[47]  D. J. Carlson, Surface microlayer phenolic enrichments indicate sea-surface slicks. Nature 1982, 296, 426.
Surface microlayer phenolic enrichments indicate sea-surface slicks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xkslygur0%3D&md5=f4eeb0e29a0d79adb4fa5363b8b3b706CAS |

[48]  M. Tedetti, K. Kawamura, B. Charriere, N. Chevalier, R. Sempere, Determination of low-molecular-weight dicarboxylic and ketocarboxylic acids in seawater samples. Anal. Chem. 2006, 78, 6012.
Determination of low-molecular-weight dicarboxylic and ketocarboxylic acids in seawater samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFentbo%3D&md5=34c83ecc539fd47262f700a2cf84249dCAS | 16944878PubMed |

[49]  K. Teinilä, V. M. Kerminen, R. Hillamo, A study of size-segregated aerosol chemistry in the Antarctic atmosphere. J. Geophys. Res. 2000, 105, 3893.
A study of size-segregated aerosol chemistry in the Antarctic atmosphere.Crossref | GoogleScholarGoogle Scholar |

[50]  V. M. Kerminen, K. Teinila, R. Hillamo, Chemistry of sea-salt particles in the summer Antarctic atmosphere. Atmos. Environ. 2000, 34, 2817.
Chemistry of sea-salt particles in the summer Antarctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFSjtL4%3D&md5=889a3a2ef961529fe5f5102865711f47CAS |

[51]  R. M. Dickhut, A. Cincinelli, M. Cochran, H. W. Ducklow, Atmospheric concentrations and air–water flux of organochlorine pesticides along the western Antarctic Peninsula. Environ. Sci. Technol. 2005, 39, 465.
Atmospheric concentrations and air–water flux of organochlorine pesticides along the western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmsLvP&md5=f3e0dc59eb6b8455ceaaa870b9b6953cCAS | 15707045PubMed |

[52]  F. M. Jaward, J. L. Barber, K. Booij, J. Dachs, R. Lohmann, K. C. Jones, Evidence for dynamic air–water coupling and cycling of persistent organic pollutants over the open Atlantic Ocean. Environ. Sci. Technol. 2004, 38, 2617.
Evidence for dynamic air–water coupling and cycling of persistent organic pollutants over the open Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislCmtrg%3D&md5=05c0cac354eb032c9379c679502c5ff8CAS | 15180058PubMed |

[53]  A. Gambaro, L. Manodori, R. Zangrando, A. Cincinelli, G. Capodaglio, P. Cescon, Atmospheric PCB concentrations at Terra Nova Bay, Antarctica. Environ. Sci. Technol. 2005, 39, 9406.
Atmospheric PCB concentrations at Terra Nova Bay, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOisL7E&md5=f2c025f446f7aedf2637cdd65c2ecce2CAS | 16475315PubMed |

[54]  Y. Li, D. Geng, F. Liu, T. Wang, P. Wang, Q. Zhang, G. Jiang, Study of PCBs and PBDEs in King George Island, Antarctica, using PUF passive air sampling. Atmos. Environ. 2012, 51, 140.
Study of PCBs and PBDEs in King George Island, Antarctica, using PUF passive air sampling.Crossref | GoogleScholarGoogle Scholar |

[55]  W. A. Ockenden, R. Lohmann, J. R. Shears, K. C. Jones, The significance of PCBs in the atmosphere of the southern hemisphere. Environ. Sci. Pollut. Res. Int. 2001, 8, 189.
The significance of PCBs in the atmosphere of the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVGqsrY%3D&md5=1669d59e5ab122ffd0da491ccd3a587aCAS | 11505903PubMed |

[56]  C. D. O’Dowd, M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, J. P. Putaud, Biogenically driven organic contribution to marine aerosol. Nature 2004, 431, 676.
Biogenically driven organic contribution to marine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGrurk%3D&md5=14aaa7cc11320da66e4551ddfcbdb2eaCAS | 15470425PubMed |