When are metal complexes bioavailable?
Chun-Mei Zhao A B , Peter G.C. Campbell C and Kevin J. Wilkinson D EA School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China.
B Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, P.R. China.
C Institut National de la Recherche Scientifique – Eau, Terre et Environnement (INRS-ETE), 490 Rue de la Couronne, Quebec, QC, G1K 9A9, Canada.
D Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, CP 6128 Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.
E Corresponding author: Email: kj.wilkinson@umontreal.ca
Chun-Mei Zhao is an associate professor at Sun Yat-Sen University. Her research interests include an examination of the environmental behaviour of trace metals and nanoparticles in the aquatic environment. She is especially interested by the influence of environmental factors on bioavailability and toxicity of trace metals and nanoparticles. Currently, her research is focussed on the speciation and bioavailability of rare earth elements in freshwater ecosystems and those affected by mining. |
Peter Campbell completed a Ph.D. at Queen’s University (Kingston, ON) in organometallic chemistry prior to spending 2 years at Monash University working with Professor John Swan in the area of organophosphorus chemistry. In 1970, he took up a position at the Institut National de la Recherche Scientifique (Université du Québec, INRS-ETE), where he is currently a Professor. Peter was elected to the Academy of Sciences of the Royal Society of Canada in 2002. His research interests focus on metals in the aquatic environment and include elements of analytical chemistry, geochemistry and ecotoxicology, where he has made a very important and sustained impact. This special issue is a recognition of the very important body of work of Peter Campbell. |
Kevin J. Wilkinson is a Professor at the Université de Montréal. His research is aimed at gaining a molecular-level understanding of contaminant bioavailability and mobility. Kevin is especially interested in examining the mobility and bioavailability of both metals and engineered nanomaterials in the environment. His research group also focuses on the development of analytical techniques designed to better understand environmental processes, including those looking at trace metal speciation or nanoparticle detection. Kevin is currently an Editor of Environmental Chemistry. |
Environmental Chemistry 13(3) 425-433 https://doi.org/10.1071/EN15205
Submitted: 29 September 2015 Accepted: 23 November 2015 Published: 2 March 2016
Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND
Environmental context. The concentration of a free metal cation has proved to be a useful predictor of metal bioaccumulation and toxicity, as represented by the free ion activity and biotic ligand models. However, under certain circumstances, metal complexes have been shown to contribute to metal bioavailability. In the current mini-review, we summarise the studies where the classic models fail and organise them into categories based on the different uptake pathways and kinetic processes. Our goal is to define the limits within which currently used models such as the biotic ligand model (BLM) can be applied with confidence, and to identify how these models might be expanded.
Abstract. Numerous data from studies over the past 30 years have shown that metal uptake and toxicity are often best predicted by the concentrations of free metal cations, which has led to the development of the largely successful free-ion activity model (FIAM) and biotic ligand model (BLM). Nonetheless, some exceptions to these classical models, showing enhanced metal bioavailability in the presence of metal complexes, have also been documented, although it is not yet fully understood to what extent these exceptions can or should be generalised. Only a few studies have specifically measured the bioaccumulation or toxicity of metal complexes while carefully measuring or controlling metal speciation. Fewer still have verified the fundamental assumptions of the classical models, especially when dealing with metal complexes. In the current paper, we have summarised the exceptions to classical models and categorised them into five groups based on the fundamental uptake pathways and kinetic processes. Our aim is to summarise the mechanisms involved in the interaction of metal complexes with organisms and to improve the predictive capability of the classic models when dealing with complexes.
References
[1] F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley-Interscience: New York).[2] P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. Turner) 1995, pp. 45–102 (Wiley: New York).
[3] J. Buffle, K. J. Wilkinson, H. P. van Leeuwen, Chemodynamics and bioavailability in natural waters. Environ. Sci. Technol. 2009, 43, 7170.
| Chemodynamics and bioavailability in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgu7vE&md5=75009c5e3e556f229bfafa16171b8b71CAS | 19848118PubMed |
[4] J. Buffle, Complexation Reactions in Aquatic Systems: An Analytical Approach 1990 (Ellis Horwood: Chichester, UK).
[5] M. A. Anderson, F. M. M. Morel, R. R. L. Guillard, Growth limitation of a coastal diatom by low zinc ion activity. Nature 1978, 276, 70.
| Growth limitation of a coastal diatom by low zinc ion activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1arsr8%3D&md5=88cf581bfcd7fd958f6ab20a8eae5a90CAS |
[6] R. J. M. Hudson, F. M. M. Morel, Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 129.
| Trace metal transport by marine microorganisms: implications of metal coordination kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVCksrw%3D&md5=38260017b07a23801fe6a7f20052ac8fCAS |
[7] V. I. Slaveykova, K. J. Wilkinson, Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ. Chem. 2005, 2, 9.
| Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7Y%3D&md5=350cf3f1e5d78b9c8b2ae03d2b205afaCAS |
[8] D. de Paiva Magalhães, M. R. da Costa Marques, D. F. Baptista, D. F. Buss, Metal bioavailability and toxicity in freshwaters. Environ. Chem. Lett. 2015, 13, 69.
| Metal bioavailability and toxicity in freshwaters.Crossref | GoogleScholarGoogle Scholar |
[9] J. E. Poldoski, Cadmium bioaccumulation assays. Their relationship to various ionic equilibria in Lake Superior water. Environ. Sci. Technol. 1979, 13, 701.
| Cadmium bioaccumulation assays. Their relationship to various ionic equilibria in Lake Superior water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlt1yktbs%3D&md5=ca821d3a43f9d1309ac8066d31e77be5CAS |
[10] J. T. Phinney, K. W. Bruland, Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira weissflogii. Environ. Sci. Technol. 1994, 28, 1781.
| Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira weissflogii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslansrc%3D&md5=6f6591bcb5d9ce940ad71f78074cb240CAS | 22175916PubMed |
[11] A. Boullemant, M. Lavoie, C. Fortin, P. G. C. Campbell, Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH. Environ. Sci. Technol. 2009, 43, 3308.
| Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFemtbg%3D&md5=86a38a2a33dfc323c9649cebee8483a3CAS | 19534151PubMed |
[12] R. P. Mason, J. R. Reinfelder, F. M. M. Morel, Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 1996, 30, 1835.
| Uptake, toxicity, and trophic transfer of mercury in a coastal diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFansL4%3D&md5=46064b14e2ee19b1dcdf54dc77464bb7CAS |
[13] J. R. Reinfelder, S. I. Chang, Speciation and microalgal bioavailability of inorganic silver. Environ. Sci. Technol. 1999, 33, 1860.
| Speciation and microalgal bioavailability of inorganic silver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVyjtL8%3D&md5=88662943c0607b282350cfcffd82b2f9CAS |
[14] C. Fortin, P. G. C. Campbell, Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride. Environ. Toxicol. Chem. 2000, 19, 2769.
| Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVeqtw%3D%3D&md5=0ed2228ed1d58cc10bdd51b82c742e42CAS |
[15] N. R. Bury, C. Hogstrand, Influence of chloride and metals on silver bioavailability to Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) yolk-sac fry. Environ. Sci. Technol. 2002, 36, 2884.
| Influence of chloride and metals on silver bioavailability to Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) yolk-sac fry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslyjurk%3D&md5=ba76824e3cc3cc3d61e0a371919b0cf6CAS | 12144263PubMed |
[16] J. T. Phinney, K. W. Bruland, Trace metal exchange in solution by the fungicides Ziram and Maneb (dithiocarbamates) and subsequent uptake of lipophilic organic zinc, copper and lead complexes into phytoplankton cells. Environ. Toxicol. Chem. 1997, 16, 2046.
| Trace metal exchange in solution by the fungicides Ziram and Maneb (dithiocarbamates) and subsequent uptake of lipophilic organic zinc, copper and lead complexes into phytoplankton cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFCjs7s%3D&md5=bb7a97986680acf6b1223ce8399b3d39CAS |
[17] P. L. Croot, B. Karlson, J. T. van Elteren, J. J. Kroon, Uptake of 64Cu–oxine by marine phytoplankton. Environ. Sci. Technol. 1999, 33, 3615.
| Uptake of 64Cu–oxine by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslOms7c%3D&md5=fbea2b3097172d73f0f54279a74ba0c9CAS |
[18] C. A. Puckett, R. J. Ernst, J. K. Barton, Exploring the cellular accumulation of metal complexes. Dalton Trans. 2010, 39, 1159.
| Exploring the cellular accumulation of metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFehsrc%3D&md5=e37e72d5e1346da2189d2ffaa5365430CAS | 20104335PubMed |
[19] M. Lavoie, S. Le Faucheur, A. Boullemant, C. Fortin, P. G. C. Campbell, The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes. J. Phycol. 2012, 48, 293.
| The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFGhsbc%3D&md5=4ede33afaa18c5993a81dfc889c16864CAS |
[20] T. Hamasaki, H. Nagase, Y. Yoshioka, T. Sato, Formation, distribution, and ecotoxicity of methylmetals of tin, mercury, and arsenic in the environment. Crit. Rev. Environ. Sci. Technol. 1995, 25, 45.
| Formation, distribution, and ecotoxicity of methylmetals of tin, mercury, and arsenic in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVCrs7c%3D&md5=7a23cecd003f247806e0425dfdddbfb5CAS |
[21] S. Andres, J.-M. Laporte, R. P. Mason, Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus). Aquat. Toxicol. 2002, 56, 303.
| Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSktrw%3D&md5=bbe5d2033178df8156a273adcce98827CAS | 11856578PubMed |
[22] E. Dopp, L. M. Hartmann, A. M. Florea, A. W. Rettenmeier, A. V. Hirner, Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit. Rev. Toxicol. 2004, 34, 301.
| Environmental distribution, analysis, and toxicity of organometal(loid) compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cnu7o%3D&md5=42ac5993eeef0b020afa686d4f95ff37CAS | 15239389PubMed |
[23] A. Turner, E. Mawji, Hydrophobicity and octanol–water partitioning of trace metals in natural waters. Environ. Sci. Technol. 2004, 38, 3081.
| Hydrophobicity and octanol–water partitioning of trace metals in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ensL0%3D&md5=925b2ba9c96a197d130eb71326b082e0CAS | 15224739PubMed |
[24] A. Turner, E. Mawji, Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability. Environ. Pollut. 2005, 135, 235.
| Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsleisL8%3D&md5=8e2b8e0961a0716500fe1ae005d58f5eCAS | 15734583PubMed |
[25] A. Turner, E. Mawji, Hydrophobicity and reactivity of trace metals in the low-salinity zone of a turbid estuary. Limnol. Oceanogr. 2005, 50, 1011.
| Hydrophobicity and reactivity of trace metals in the low-salinity zone of a turbid estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Chsbw%3D&md5=198efc2a4357a13c86e5a26710e76b99CAS |
[26] A. Turner, I. Williamson, Octanol–water partitioning of chemical constituents in river water and treated sewage effluent. Water Res. 2005, 39, 4325.
| Octanol–water partitioning of chemical constituents in river water and treated sewage effluent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGhsLbP&md5=cc601110fc8cc24135f458e29416f1c8CAS | 16225903PubMed |
[27] P. Bell, M. J. McLaughlin, G. Cozens, D. P. Stevens, G. Owens, H. South, Plant uptake of 14C-EDTA, 14C-citrate, and 14C-histidine from chelator-buffered and conventional hydroponic solutions. Plant Soil 2003, 253, 311.
| Plant uptake of 14C-EDTA, 14C-citrate, and 14C-histidine from chelator-buffered and conventional hydroponic solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKru7c%3D&md5=36003d971199447d7d5b62b92d6c721cCAS |
[28] H. Svennerstam, S. Jämtgård, I. Ahmad, K. Huss-Danell, T. Näsholm, U. Ganeteg, Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol. 2011, 191, 459.
| Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqtr%2FF&md5=8c69398141adb171996f6d2387f3ab9fCAS | 21453345PubMed |
[29] B. P. Krom, J. B. Warner, W. N. Konings, J. S. Lolkema, Complementary metal ion specificity of the metal–citrate transporters CitM and CitH of Bacillus subtilis. J. Bacteriol. 2000, 182, 6374.
| Complementary metal ion specificity of the metal–citrate transporters CitM and CitH of Bacillus subtilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVGhu74%3D&md5=c3d646bd822e1ecf47f174ae34101bf5CAS | 11053381PubMed |
[30] V. S. Blancato, C. Magni, J. S. Lolkema, Functional characterization and Me2+ ion specificity of a Ca2+–citrate transporter from Enterococcus faecalis. FEBS J. 2006, 273, 5121.
| Functional characterization and Me2+ ion specificity of a Ca2+–citrate transporter from Enterococcus faecalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqs7zJ&md5=dc30f20a599f33eb49a47b515dc069c5CAS | 17042778PubMed |
[31] O. Errecalde, M. Seidl, P. G. C. Campbell, Influence of a low-molecular-weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model. Water Res. 1998, 32, 419.
| Influence of a low-molecular-weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1OgtQ%3D%3D&md5=dd82fb5343e4d6ea2ed3840ba6635c0eCAS |
[32] D. A. Hutchins, A. E. Witter, A. Butler, G. W. Luther, Competition among marine phytoplankton for different chelated iron species. Nature 1999, 400, 858.
| Competition among marine phytoplankton for different chelated iron species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslGls74%3D&md5=7d41b1d81ff3e0f8ce78a9dd0f580ed0CAS |
[33] J. B. Neilands, Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 1995, 270, 26723.
| Siderophores: structure and function of microbial iron transport compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVGmurw%3D&md5=f5f5a4b71f562621d11be31c0de38d0dCAS | 7592901PubMed |
[34] C. Fortin, P. G. C. Campbell, Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ. Sci. Technol. 2001, 35, 2214.
| Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVCgsLo%3D&md5=b935df4904b0c3e55c0729c47d2d1c54CAS | 11414021PubMed |
[35] V. P. Hiriart-Baer, C. Fortin, D.-Y. Lee, P. G. C. Campbell, Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: influence of thiosulphate. Aquat. Toxicol. 2006, 78, 136.
| Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: influence of thiosulphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVeksbs%3D&md5=7dae7ef6a9c73e8c658131eb5e66ede9CAS | 16621059PubMed |
[36] H. W. van Veen, T. Abee, G. J. J. Kortstee, W. N. Konings, A. J. B. Zehnder, Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 1994, 33, 1766.
| Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXht12hsbg%3D&md5=161fb04376fb7c2314defb15dad62803CAS | 8110778PubMed |
[37] J. G. Moberly, A. Staven, R. K. Sani, B. M. Peyton, Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ. Sci. Technol. 2010, 44, 7302.
| Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGit7k%3D&md5=7bc373ceba520acafa740305dfa34f5eCAS | 20553043PubMed |
[38] G. P. Bienert, M. Thorsen, M. D. Schüssler, H. R. Nilsson, A. Wagner, M. J. Tamás, T. P. Jahn, A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 2008, 6, 26.
| A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes.Crossref | GoogleScholarGoogle Scholar | 18544156PubMed |
[39] A. Porquet, M. Filella, Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem. Res. Toxicol. 2007, 20, 1269.
| Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVelu74%3D&md5=fca02d59a2146142a4788a66a284739cCAS | 17713961PubMed |
[40] H.-C. Yang, H.-L. Fu, Y.-F. Lin, B. P. Rosen, Pathways of arsenic uptake and efflux, in Metal Transporters (Eds S. Lutsenko, J.M. Arguello) 2012, Vol. 69, pp. 323–358 (Academic Press: San Diego, CA)
[41] R. Mukhopadhyay, H. Bhattacharjee, B. P. Rosen, Aquaglyceroporins: generalized metalloid channels. Biochimica et Biophysica Acta (BBA) – General Subjects 1840, 2014, 1583.
[42] K. J. Wilkinson, P. M. Bertsch, C. H. Jagoe, P. G. C. Campbell, Surface complexation of aluminium on isolated fish gill cells. Environ. Sci. Technol. 1993, 27, 1132.
| Surface complexation of aluminium on isolated fish gill cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Oks7o%3D&md5=3fd5b84931c090ac9f1d9dc02164be21CAS |
[43] C. Lamelas, K. J. Wilkinson, V. I. Slaveykova, Influence of the composition of natural organic matter on Pb bioavailability to microalgae. Environ. Sci. Technol. 2005, 39, 6109.
| Influence of the composition of natural organic matter on Pb bioavailability to microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVKks7s%3D&md5=84910a2d77986b5722afa20633c072e2CAS | 16173570PubMed |
[44] L. Aristilde, Y. Xu, F. M. M. Morel, Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 2012, 46, 5438.
| Weak organic ligands enhance zinc uptake in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xltl2ht7c%3D&md5=ffaa065c4e60bbf80aa23b525f29d3afCAS | 22494184PubMed |
[45] C.-M. Zhao, K. J. Wilkinson, Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands. Environ. Sci. Technol. 2015, 49, 2207.
| Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCgtbg%3D&md5=0938f9fd2a2fc5896c43ffc3c3383272CAS | 25611881PubMed |
[46] C. S. Hassler, V. I. Slaveykova, K. J. Wilkinson, Discriminating between intra- and extracellular metals using chemical extractions. Limnol. Oceanogr. Methods 2004, 2, 237.
| Discriminating between intra- and extracellular metals using chemical extractions.Crossref | GoogleScholarGoogle Scholar |
[47] G. Yang, Q.-G. Tan, L. Zhu, K. J. Wilkinson, The role of complexation and competition in the biouptake of europium by a unicellular alga. Environ. Toxicol. Chem. 2014, 33, 2609.
| The role of complexation and competition in the biouptake of europium by a unicellular alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKnsb%2FI&md5=4e281cd28b1603a06dfad4ff1581f284CAS | 25132226PubMed |
[48] R. J. M. Hudson, Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Sci. Total Environ. 1998, 219, 95.
| Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrw%3D&md5=e65588742d315cd03a9c2941cf8d76beCAS |
[49] C. Lamelas, V. I. Slaveykova, Comparison of CdII, CuII, and PbII biouptake by green algae in the presence of humic acid. Environ. Sci. Technol. 2007, 41, 4172.
| Comparison of CdII, CuII, and PbII biouptake by green algae in the presence of humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVCltLk%3D&md5=43610ac85161168563d63d916c41998fCAS | 17612207PubMed |
[50] C. Lamelas, J. P. Pinheiro, V. I. Slaveykova, Effect of humic acid on CdII, CuII, and PbII uptake by freshwater algae: kinetic and cell wall speciation considerations. Environ. Sci. Technol. 2009, 43, 730.
| Effect of humic acid on CdII, CuII, and PbII uptake by freshwater algae: kinetic and cell wall speciation considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVSqtg%3D%3D&md5=1574edbb755920600a17eb55e9127dbeCAS | 19245009PubMed |
[51] A. Gramlich, S. Tandy, E. Frossard, J. Eikenberg, R. Schulin, Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role? J. Agric. Food Chem. 2013, 61, 10409.
| Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGhu7%2FI&md5=b89497f503f1acadf7b7d8dab5a5a028CAS | 24147770PubMed |
[52] K. J. Wilkinson, P. G. C. Campbell, P. Couture, Effect of fluoride complexation on aluminium toxicity towards juvenile Atlantic salmon (Salmo Salar). Can. J. Fish. Aquat. Sci. 1990, 47, 1446.
| Effect of fluoride complexation on aluminium toxicity towards juvenile Atlantic salmon (Salmo Salar).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlslSmtw%3D%3D&md5=a9d37987b01cc22cabb08cc288ef600fCAS |
[53] A. Crémazy, P. G. C. Campbell, C. Fortin, The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species. Environ. Sci. Technol. 2013, 47, 2408.
| The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species.Crossref | GoogleScholarGoogle Scholar | 23360212PubMed |
[54] W. G. Sunda, S. A. Huntsman, Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 1992, 37, 25.
| Feedback interactions between zinc and phytoplankton in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVOqsrg%3D&md5=41e2fc3e4a865ad5150e972c47f5aa52CAS |
[55] L. Parent, M. R. Twiss, P. G. C. Campbell, Influences of natural dissolved organic matter on the interaction of aluminium with the microalga Chlorella: a test of the free-ion model of trace metal toxicity. Environ. Sci. Technol. 1996, 30, 1713.
| Influences of natural dissolved organic matter on the interaction of aluminium with the microalga Chlorella: a test of the free-ion model of trace metal toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKnsr4%3D&md5=1ceb420d84eeb732b494566f3d52dfdeCAS |
[56] E. Granéli, P. Carlsson, C. Legrand, The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquat. Ecol. 1999, 33, 17.
| The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species.Crossref | GoogleScholarGoogle Scholar |
[57] J. Shapiro, Chemical and biological studies on the yellow organic acids of lake water. Limnol. Oceanogr. 1957, 2, 161.
[58] S. A. Green, N. V. Blough, Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 1994, 39, 1903.
| Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1SrurY%3D&md5=2d0d7b28b8552fedac612da825e7c973CAS |
[59] P. G. C. Campbell, M. R. Twiss, K. J. Wilkinson, Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can. J. Fish. Aquat. Sci. 1997, 54, 2543.
| Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsVGqtrk%3D&md5=a6657d107a28bfe5930861bbfcf6597bCAS |
[60] L. P. Sanford, S. M. Crawford, Mass transfer versus kinetic control of uptake across solid–water boundaries. Limnol. Oceanogr. 2000, 45, 1180.
| Mass transfer versus kinetic control of uptake across solid–water boundaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFCrt7g%3D&md5=25ab3d92e6d2f32636791fba7227d4b1CAS |
[61] C. S. Hassler, K. J. Wilkinson, Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ. Toxicol. Chem. 2003, 22, 620.
| Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlCkurs%3D&md5=d36b149a26d7863fcd8e6cae7bae126fCAS | 12627651PubMed |
[62] S. Meylan, R. Behra, L. Sigg, Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. Environ. Sci. Technol. 2004, 38, 3104.
| Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ensLg%3D&md5=6357850bd9a82c5a199a955966c1b64cCAS | 15224742PubMed |
[63] S. Jansen, R. Blust, H. P. Van Leeuwen, Metal speciation dynamics and bioavailability: ZnII and CdII uptake by mussel (Mytilus edulis) and carp (Cyprinus carpio). Environ. Sci. Technol. 2002, 36, 2164.
| Metal speciation dynamics and bioavailability: ZnII and CdII uptake by mussel (Mytilus edulis) and carp (Cyprinus carpio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVOjtrc%3D&md5=ac0650cbbf81387d35583f12d4639332CAS | 12038825PubMed |
[64] F. Degryse, E. Smolders, R. Merckx, Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol. 2006, 40, 830.
| Labile Cd complexes increase Cd availability to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlarsrfK&md5=cd86a770c906b0380699551230062719CAS | 16509325PubMed |
[65] I. A. Newman, Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ. 2001, 24, 1.
| Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlygu7g%3D&md5=098e6a724f026c510fca688d386d1efeCAS | 11762438PubMed |
[66] J. Harskamp, M. O’Donnell, E. Berkelaar, Determining the fluxes of Tl+ and K+ at the root surface of wheat and canola using TlI and K ion-selective microelectrodes. Plant Soil 2010, 335, 299.
| Determining the fluxes of Tl+ and K+ at the root surface of wheat and canola using TlI and K ion-selective microelectrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrt7zL&md5=f835fd239903bd4188acb840904ba676CAS |
[67] E. W. Koch, Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Mar. Biol. 1994, 118, 767.
| Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa.Crossref | GoogleScholarGoogle Scholar |
[68] F. I. M. Thomas, M. J. Atkinson, Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol. Oceanogr. 1997, 42, 81.
| Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVCltr4%3D&md5=d07de90b1fbe295beaecfbac4c177e82CAS |
[69] T. N. P. Bosma, P. J. M. Middeldorp, G. Schraa, A. J. B. Zehnder, Mass transfer limitation of biotransformation: quantifying bioavailability. Environ. Sci. Technol. 1997, 31, 248.
| Mass transfer limitation of biotransformation: quantifying bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVyjsrs%3D&md5=07e1f0584c747c0209e923ffd6a69804CAS |
[70] G. Mierle, Kinetics of phosphate transport by Synechococcus leopoliensis (Cyanophyta): evidence for diffusion limitation of phosphate uptake. J. Phycol. 1985, 21, 177.
| Kinetics of phosphate transport by Synechococcus leopoliensis (Cyanophyta): evidence for diffusion limitation of phosphate uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1yjtL8%3D&md5=47e7230f9a506615e3d49d4d52297b9eCAS |
[71] P. Sánchez-Marín, C. Fortin, P. G. C. Campbell, Copper and lead internalisation by freshwater microalgae at different carbonate concentrations. Environ. Chem. 2013, 10, 80.
| Copper and lead internalisation by freshwater microalgae at different carbonate concentrations.Crossref | GoogleScholarGoogle Scholar |
[72] J. P. Pinheiro, J. Galceran, H. P. van Leeuwen, Metal speciation dynamics and bioavailability: bulk depletion effects. Environ. Sci. Technol. 2004, 38, 2397.
| Metal speciation dynamics and bioavailability: bulk depletion effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslCltL8%3D&md5=cce1f8457aba09f579081a6506488dcdCAS | 15116846PubMed |
[73] S. Leclerc, K. J. Wilkinson, Bioaccumulation of nanosilver by Chlamydomonas reinhardtii – nanoparticle or the free ion? Environ. Sci. Technol. 2014, 48, 358.
| Bioaccumulation of nanosilver by Chlamydomonas reinhardtii – nanoparticle or the free ion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2mtL%2FO&md5=7fd03d15999d7461cf35ccbc5a4e1fbeCAS | 24320028PubMed |
[74] J. P. Pinheiro, H. P. van Leeuwen, Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range. Environ. Sci. Technol. 2001, 35, 894.
| Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVOnsA%3D%3D&md5=c228096eb9a69820bd1f7387761ba4dcCAS | 11351532PubMed |
[75] K. J. Wilkinson, J. Buffle, Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems, in Physicochemical Kinetics and Transport at Biointerfaces (Eds H. P. van Leeuwen, W. Köster) 2004, pp. 445–533 (Wiley: Chichester, UK).
[76] M. Eigen, R. G. Wilkins, The kinetics and mechanism of formation of metal complexes, in Mechanisms of Inorganic Reactions (Eds J. Kleinberg, R. K. Murmann, R. T. M. Fraser, J. Bauman) 1965, pp. 55–80 (American Chemical Society: Washington, DC).
[77] R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes 1991 (Wiley-VCH: Weinheim, Germany).
[78] R. J. M. Hudson, F. M. M. Morel, Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 1990, 35, 1002.
| Iron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFersrg%3D&md5=7d4daf9d36893993bf347db39879ada9CAS |
[79] S. A. Thomas, T. Tong, J.-F. Gaillard, HgII bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics 2014, 6, 2213.
| HgII bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslekt7vL&md5=34e1339d7b003bca64d9ca83ccf878d9CAS | 25322360PubMed |
[80] J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (bio)interfaces. Part 1: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ. Sci. Technol. 2007, 41, 7609.
| Metal flux and dynamic speciation at (bio)interfaces. Part 1: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtr3E&md5=fb4284759a26f24ddba7b97ff29754c3CAS | 18075065PubMed |
[81] D. Tran, A. Boudou, J.-C. Massabuau, How water oxygenation level influences cadmium accumulation pattern in the Asiatic clam Corbicula fluminea: a laboratory and field study. Environ. Toxicol. Chem. 2001, 20, 2073.
| How water oxygenation level influences cadmium accumulation pattern in the Asiatic clam Corbicula fluminea: a laboratory and field study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt12ltLs%3D&md5=64467611ca4be9616e4d83de701bc702CAS | 11521837PubMed |
[82] H. P. van Leeuwen, Metal speciation dynamics and bioavailability: inert and labile complexes. Environ. Sci. Technol. 1999, 33, 3743.
| Metal speciation dynamics and bioavailability: inert and labile complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2jtLc%3D&md5=86d6b6545e1a559828b61a166366fe08CAS |
[83] F. Galvez, A. Donini, R. C. Playle, D. S. Smith, M. J. O’Donnell, C. M. Wood, A matter of potential concern: natural organic matter alters the electrical properties of fish gills. Environ. Sci. Technol. 2008, 42, 9385.
| A matter of potential concern: natural organic matter alters the electrical properties of fish gills.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqtL%2FO&md5=a3c7f61beb9554b1c168caac267995e1CAS | 19174920PubMed |
[84] C. E. W. Steinberg, NOM as natural xenobiotics, in Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems (Ed. F. Rosario-Ortiz) 2014, pp. 115–144 (American Chemical Society: Washington, DC).
[85] C. E. W. Steinberg, S. Kamara, V. Y. Prokhotskaya, L. Manusadžianas, T. A. Karasyova, M. A. Timofeyev, Z. Jie, A. Paul, T. Meinelt, V. F. Farjalla, A. Y. O. Matsuo, B. Kent Burnison, R. Menzel, Dissolved humic substances – ecological driving forces from the individual to the ecosystem level? Freshw. Biol. 2006, 51, 1189.
| Dissolved humic substances – ecological driving forces from the individual to the ecosystem level?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFyqtrk%3D&md5=028a267c917955f3999fe5ab9a0c0a71CAS |