Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Mass dependent processes can generate an isotope anomaly: the effect of ordinary diffusion on Δ17O in solids

Laura Donatella Campisi
+ Author Affiliations
- Author Affiliations

Independent researcher, Southampton, UK. Email: ldrcampisi@gmail.com

Environmental Chemistry 13(5) 784-791 https://doi.org/10.1071/EN15170
Submitted: 11 August 2015  Accepted: 8 March 2016   Published: 26 April 2016

Environmental context. The nitrate oxygen isotope anomaly has been suggested as a tool for quantifying the atmospheric input of this essential nutrient to terrestrial environments. However, it is calculated that the most important transport process in minerals, diffusion, may also be responsible for measurable anomalies. The signal in Chilean nitrate minerals could be associated with diffusion during crystal growth so the belief that the nitrate is entirely of atmospheric origin is therefore questioned.

Abstract. Calculated diffusion profiles assuming the classical mass dependence of diffusion coefficients indicate that important Δ17O gradients could be measured in geological samples. The belief that the MIF (mass independent fractionation) signature can be used as a tracer of atmospheric processes because mass dependent processes cannot significantly alter the signal is therefore questioned. Oxygen delta values in a three-isotope plot could lie on a straight line of slope 0.5 or 1 when diffusion is approximately a linear process. Diffusion during nitratine (NaNO3) growth could be partially responsible for measured Δ17O in nitrate deposits from Atacama Desert (Chile) and Turpan-Hami Basin (China).


References

[1]  M. H. Thiemens, History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 2006, 34, 217.
History and applications of mass-independent isotope effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFCntbY%3D&md5=8ec10b5ab7517cc96cdb3a427212bb92CAS |

[2]  C. Kendall, E. M. Elliott, S. D. Wankel, Tracing anthropogenic inputs of nitrogen to ecosystems, in Stable Isotopes in Ecology and Environmental Science (Eds R. H. Michener, K. Lajtha) 2007, pp. 375–449 (Blackwell Publishing: Oxford, UK).

[3]  U. Tsunogai, S. Daita, D. D. Komatsu, F. Nakagawa, A. Tanaka, Quantifying nitrate dynamics in an oligotrophic lake using Δ17O. Biogeosciences 2011, 8, 687.
Quantifying nitrate dynamics in an oligotrophic lake using Δ17O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1yntr0%3D&md5=9f06c37c82c6fd27cdfdfe9fb92f0105CAS |

[4]  G. Michalski, J. K. Böhlke, M. H. Thiemens, Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta 2004, 68, 4023.
Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Ogt7o%3D&md5=acae66f4596f715c4c71b733451bf9ddCAS |

[5]  J. Farquhar, M. Peters, D. T. Johnston, H. Strauss, A. Masterson, U. Wiechert, A. Kaufman, Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 2007, 449, 706.
Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFChurfK&md5=28073ef75090ee6dd0b3234762d06caaCAS | 17928857PubMed |

[6]  E. D. Young, A. Galy, H. Nagahara, Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 2002, 66, 1095.
Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslygsLk%3D&md5=eb24976ed758b885446af83b5dd65980CAS |

[7]  R. N. Clayton, L. Grossman, T. K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 1973, 182, 485.
A component of primitive nuclear composition in carbonaceous meteorites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXpvVGgsw%3D%3D&md5=b52afacd5565fae392e12023a7740e6aCAS | 17832468PubMed |

[8]  F. Robert, C. Camy-Peyret, Ozone isotopic composition: an angular effect in scattering processes? Ann. Geophys. 2001, 19, 229.
Ozone isotopic composition: an angular effect in scattering processes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVWjtg%3D%3D&md5=ab69f2b037eb89ce7e55f5343b1e0fc8CAS |

[9]  M. F. Miller, I. A. Franchi, M. H. Thiemens, T. L. Jackson, A. Brack, G. Kurat, C. T. Pillinger, Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates. Proc. Natl. Acad. Sci. 2002, 99, 10988.
Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslSmsLs%3D&md5=aed24b835c19bfab50ea67f28e531e54CAS | 12167677PubMed |

[10]  F. M. Richter, N. Dauphas, F. Z. Teng, Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem. Geol. 2009, 258, 92.
Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWrsrzJ&md5=d7b038548b8331c8c37b774fbee1ed18CAS |

[11]  G. Dominguez, G. Wilkins, M. H. Thiemens, The Soret effect and isotopic fractionation in high-temperature silicate melts. Nature 2011, 473, 70.
The Soret effect and isotopic fractionation in high-temperature silicate melts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFeisLk%3D&md5=d474a3e0a0a5c3dd9bc5117bf71a518dCAS | 21508959PubMed |

[12]  D. J. Lacks, J. A. Van Orman, C. E. Lesher, Isotope fractionation in silicate melts. Nature 2012, 482, E1.
Isotope fractionation in silicate melts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit12jsro%3D&md5=ec807f9d5a5fdf8b5d86f1d0b7c6a6adCAS | 22337062PubMed |

[13]  W. M. Franklin, Quantum and anharmonic effects on the temperature and mass dependence of rate processes in solids. J. Chem. Phys. 1972, 57, 2659.
Quantum and anharmonic effects on the temperature and mass dependence of rate processes in solids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltlSrt7w%3D&md5=39c0f233a46c2b82a68aa458e4d0b280CAS |

[14]  A. D. Le Claire, Some comments on the mass effect in diffusion. Philos. Mag. 1966, 14, 1271.
Some comments on the mass effect in diffusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktVyrug%3D%3D&md5=4ade3455ae13f0a707d61d8f1d96390bCAS |

[15]  E. D. Young, S. S. Russell, Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 1998, 282, 452.
Oxygen reservoirs in the early solar nebula inferred from an Allende CAI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslejt74%3D&md5=c86b4ba0987ada367b902be81b4921d0CAS | 9774267PubMed |

[16]  E. D. Young, J. I. Simon, A. Galy, S. S. Russel, E. Tonui, O. Lovera, Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science 2005, 308, 223.
Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFCgsb8%3D&md5=f844a366e75769a887b6c4f5c8e6ce31CAS | 15746387PubMed |

[17]  H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids 1959 (Clarendon Press: Oxford).

[18]  J. Crank, The Mathematics of Diffusion 1979 (Oxford University Press: Oxford).

[19]  J. R. Farver, Oxygen self-diffusion in calcite: dependence on temperature and water fugacity. Earth Planet. Sci. Lett. 1994, 121, 575.
Oxygen self-diffusion in calcite: dependence on temperature and water fugacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFKisrs%3D&md5=e00240d9346ccc19bac57362dcaf140eCAS |

[20]  S. L. S. Stipp, J. Konnerup-Madsen, K. Franzreb, A. Kulik, H. J. Mathieu, Spontaneous movement of ions through calcite at standard temperature and pressure. Nature 1998, 396, 356.
Spontaneous movement of ions through calcite at standard temperature and pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVars7s%3D&md5=59e46314dedfabed81908832cc7ec95cCAS |

[21]  R. Benages-Vilau, M. Rubbo, T. Calvet, M. Cuevas-Diarte, D. Aquilano, Growth kinetics of the {10.4} faces of nitratine (NaNO3). Cryst. Growth Des. 2013, 13, 3419.
Growth kinetics of the {10.4} faces of nitratine (NaNO3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFansrY%3D&md5=dbfc7e025fbe0e5d719244f4c33fcc8cCAS |

[22]  R. Benages-Vilau, T. Calvet, M. Cuevas-Diarte, C. Pimentel, C. M. Pina, Epitaxial crystal growth of nitratine on calcite (10.4) cleavage faces at the nanoscale. Cryst. Growth Des. 2013, 13, 5397.
Epitaxial crystal growth of nitratine on calcite (10.4) cleavage faces at the nanoscale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Gqur%2FP&md5=72268693c633b703d36b8f05f646c424CAS |

[23]  R. D. Vengrenovich, B. V. Ivanskii, A. V. Moskalyuk, Generalized Chakraverty–Wagner distribution. Ukr. Fiz. Zh. 2008, 53, 1101.
| 1:CAS:528:DC%2BD1MXhvVOiuw%3D%3D&md5=9a0eeddf894ed37d7c028bd802d2169fCAS |

[24]  L. Yanhe, Q. Yan, L. Feng, H. Kejun, W. Defang, Discovery of mass independent oxygen isotopic compositions in superscale nitrate mineral deposits from Turpan-Hami Basin, Xinjiang, China and its significance. Acta Geol. Sin. 2010, 84, 1514.
Discovery of mass independent oxygen isotopic compositions in superscale nitrate mineral deposits from Turpan-Hami Basin, Xinjiang, China and its significance.Crossref | GoogleScholarGoogle Scholar |

[25]  X. B. Wang, X. Yang, L. S. Wang, Photodetachment and theoretical study of free and water-solvated nitrate ions, NO3–(H2O)n (n = 0–6). J. Chem. Phys. 2002, 116, 561.
Photodetachment and theoretical study of free and water-solvated nitrate ions, NO3(H2O)n (n = 0–6).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFantg%3D%3D&md5=eebe0d2dcfae230cb8e2e6ac29a32e83CAS |

[26]  M. R. Waterland, D. Stockwell, A. M. Kelly, Symmetry breaking effects in NO3–: Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrate–water complexes. J. Chem. Phys. 2001, 114, 6249.
Symmetry breaking effects in NO3: Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrate–water complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlKlsbY%3D&md5=3cfebca18c0722753f9f9de73ff2beb7CAS |

[27]  S. Mahata, S. K. Bhattacharya, Anomalous enrichment of 17O and 13C in photodissociation products of CO2: possible role of nuclear spin. J. Chem. Phys. 2009, 130, 234312.
Anomalous enrichment of 17O and 13C in photodissociation products of CO2: possible role of nuclear spin.Crossref | GoogleScholarGoogle Scholar | 19548732PubMed |

[28]  L. D. Campisi, Multilayer perceptrons as function approximators for analytical solutions of the diffusion equation. Comput. Geosci. 2015, 19, 769.
Multilayer perceptrons as function approximators for analytical solutions of the diffusion equation.Crossref | GoogleScholarGoogle Scholar |