Secondary organic aerosol formation from ethyne in the presence of NaCl in a smog chamber
Shuangshuang Ge A B , Yongfu Xu A C and Long Jia AA State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
B College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China.
C Corresponding author. Email address: xyf@mail.iap.ac.cn
Environmental Chemistry 13(4) 699-710 https://doi.org/10.1071/EN15155
Submitted: 23 July 2015 Accepted: 26 November 2015 Published: 10 February 2016
Environmental context. Ethyne is the lightest of the non-methane hydrocarbons, whose oxidation product, glyoxal, is an important precursor of secondary organic aerosol. This study explores the effects of relative humidity on the formation of secondary organic aerosol under irradiation in the presence of nitrogen oxides and sodium chloride. Results show that relative humidity can enhance aerosol formation, which provides evidence of the contribution of ethyne to organic particles.
Abstract. The heterogeneous photochemical oxidation of ethyne was investigated under different relative humidity (RH) conditions in the presence of nitrogen oxides and sodium chloride in a self-made indoor smog chamber. The purpose was to study the influence of RH on the formation of secondary organic aerosol (SOA) from C2H2. Through the experiments, we found that SOA was rarely formed at <22 % RH in the presence of NaCl seed particles, and that SOA began to be formed at ≥29 % RH in the presence of NaCl, which shows the importance of RH in the formation of SOA. The yield of SOA (YSOA) from C2H2 was 0.2 % at 51 % RH, and increased by a factor of 17.5 as RH reached 83 %. The SOA yield increased with increasing RH. The geometric mean diameter of the particles increased by a factor of 1.17, 1.22, 1.28 and 1.51 at a RH of 51, 63, 74 and 83 % respectively at the end of the experiment, indicating that the growth of the particle size also increased with increasing RH. Analysis of the SOA with Fourier-transform infrared (FTIR) spectrometry indicated that the particles generated from C2H2 contained the functional groups –OH, C=O, C–O–C and C–C–OH, for whose absorption peaks increase with increasing RH.
Additional keywords: heterogeneous reaction, particle size, relative humidity, SOA yield.
References
[1] B. J. Turpin, J. J. Huntzicker, Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527.| Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFCgur4%3D&md5=a81c74112979cfd5a31c75ef4c24f872CAS |
[2] S. N. Pandis, R. A. Harley, G. R. Cass, J. H. Seinfeld, Secondary organic aerosol formation and transport. Atmos. Environ. 1992, 26, 2266.
| Secondary organic aerosol formation and transport.Crossref | GoogleScholarGoogle Scholar |
[3] M. C. Jacobson, H. C. Hansson, K. J. Noone, R. J. Charlson, Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 2000, 38, 267.
| Organic atmospheric aerosols: review and state of the science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFejsrg%3D&md5=7d023e26e36b6688be489d8a4cffd780CAS |
[4] M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenes, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Willdt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
| The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=600a29fdd359444dd4fba641775e8ae4CAS |
[5] D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Worsnop, M. J. Evans, G. W. Mann, Q. Zhang, M. R. Canagaratna, J. Allan, H. Coe, G. McFiggans, A. Rap, P. Forster, Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 2011, 11, 12 109.
| Aerosol mass spectrometer constraint on the global secondary organic aerosol budget.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVKlsLk%3D&md5=5efb58494a3ba4b7d5702274843b8d7eCAS |
[6] M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M. O. Andreae, P. Artaxo, W. Maenhaut, Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173.
| Formation of secondary organic aerosols through photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVWgtb4%3D&md5=09de57ca768e0a664470525395273451CAS | 14976309PubMed |
[7] J. H. Seinfeld, J. F. Pankow, Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 2003, 54, 121.
| Organic atmospheric particulate material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgs7s%3D&md5=e816851fc60a3ba43dce4a005df0197aCAS | 12524426PubMed |
[8] D. Grosjean, J. H. Seinfeld, Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ. 1989, 23, 1733.
| Parameterization of the formation potential of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXotlWrsA%3D%3D&md5=64b5cedca2b5d873c6a41e82311f6a9eCAS |
[9] D. Grosjean, In situ organic aerosol formation during a smog episode: estimated production and chemical functionality. Atmos. Environ. 1992, 26, 953.
| In situ organic aerosol formation during a smog episode: estimated production and chemical functionality.Crossref | GoogleScholarGoogle Scholar |
[10] J. R. Odum, T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, J. H. Seinfeld, Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996, 30, 2580.
| Gas/particle partitioning and secondary organic aerosol yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOiurc%3D&md5=e5cb8b53527faebad35db73f908c5129CAS |
[11] J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207.
| Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds.Crossref | GoogleScholarGoogle Scholar |
[12] R. Volkamer, P. J. Ziemann, M. J. Molina, Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2009, 9, 1907.
| Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisr4%3D&md5=3fb23b3f795a1a902471fe6d21b9778dCAS |
[13] X. H. H. Huang, H. S. S. Ip, J. Z. Yu, Secondary organic aerosol formation from ethylene in the urban atmosphere of Hong Kong: a multiphase chemical modeling study. J. Geophys. Res. 2011, 116, D03206.
| Secondary organic aerosol formation from ethylene in the urban atmosphere of Hong Kong: a multiphase chemical modeling study.Crossref | GoogleScholarGoogle Scholar |
[14] L. Y. Yeung, M. J. Pennino, A. M. Miller, M. J. Elrod, Kinetics and mechanistic studies of the atmospheric oxidation of alkynes. J. Phys. Chem. A 2005, 109, 1879.
| Kinetics and mechanistic studies of the atmospheric oxidation of alkynes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ejs74%3D&md5=f835ff38b2fb8c898127c8072cb9d3daCAS | 16833520PubMed |
[15] R. Volkamer, F. San Martini, D. Salcedo, L. T. Molina, J. L. Jimenez, M. J. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
| A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |
[16] F. Schweitzer, L. Magi, P. Mirabel, C. George, Uptake rate measurements of methanesulfonic acid and glyoxal by aqueous droplets. J. Phys. Chem. 1998, 102, 593.
| Uptake rate measurements of methanesulfonic acid and glyoxal by aqueous droplets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvQ%3D%3D&md5=43faaea1b2973ef83d5381b8c4ea7664CAS |
[17] A. G. Carlton, B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. J. Lim, B. Ervens, Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 2007, 41, 7588.
| Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yis7vJ&md5=c364dda5f8e7c6ef2e740370ce32605fCAS |
[18] B. Ervens, A. G. Carlton, B. J. Turpin, K. E. Altieri, S. M. Kreidenweis, G. Feingold, Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett. 2008, 35, L02816.
| Secondary organic aerosol yields from cloud-processing of isoprene oxidation products.Crossref | GoogleScholarGoogle Scholar |
[19] Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Effects of precursor concentration and acidic sulfate in aqueous glyoxal–OH radical oxidation and implications for secondary organic aerosol. Environ. Sci. Technol. 2009, 43, 8105.
| Effects of precursor concentration and acidic sulfate in aqueous glyoxal–OH radical oxidation and implications for secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1arur7J&md5=dc364c71d940b0c87b45deccd62a9e99CAS | 19924930PubMed |
[20] P. Warneck, In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 2003, 37, 2423.
| In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVegsLs%3D&md5=5d31083cfd4129df6f7e5258355b8c92CAS |
[21] Y. B. Lim, Y. Tan, B. J. Turpin, Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase. Atmos. Chem. Phys. 2013, 13, 8651.
| Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase.Crossref | GoogleScholarGoogle Scholar |
[22] C. Textor, M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, J. E. Kristjansson, M. Krol, A. Lauer, J. F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, X. Tie, Analysis and quantification of the diversities of aerosol life processes within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777.
| Analysis and quantification of the diversities of aerosol life processes within AeroCom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslWqtrY%3D&md5=fccf8cbf931abc465ea28e621c936207CAS |
[23] M. J. Rossi, Heterogeneous reactions on salts. Chem. Rev. 2003, 103, 4823.
| Heterogeneous reactions on salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOhtb8%3D&md5=705b28a94e7992528306ed3d5e133f07CAS | 14664635PubMed |
[24] R. Beardsley, M. Jang, B. Ori, Y. Im, C. A. Delcomyn, N. Witherspoon, Role of sea-salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environ. Chem. 2013, 10, 167.
| Role of sea-salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaksLfK&md5=4c95f1edda4a2f5c2b157be28c6ca35fCAS |
[25] M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, F. N. Keutsch, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 2009, 9, 3331.
| Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1amsb4%3D&md5=083771daf338fabb0c221d9e081ee74cCAS |
[26] Y. B. Lim, Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 2010, 10, 10 521.
| Aqueous chemistry and its role in secondary organic aerosol (SOA) formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kjtb0%3D&md5=48bc9de845b66d2649bec9c29283394aCAS |
[27] J. R. Kirkland, Y. B. Lim, Y. Tan, K. E. Altieri, B. J. Turpin, Glyoxal secondary organic aerosol chemistry: effects of dilute nitrate and ammonium and support for organic radical–radical oligomer formation. Environ. Chem. 2013, 10, 158.
| Glyoxal secondary organic aerosol chemistry: effects of dilute nitrate and ammonium and support for organic radical–radical oligomer formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaksLnO&md5=354706855c9bad4dce403781702860e2CAS |
[28] A. J. Sumner, J. L. Woo, V. Faye McNeill, Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry. Environ. Sci. Technol. 2014, 48, 11 919.
| Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFChtL3P&md5=92062d94c7e41439ddbc821ca629bdc0CAS |
[29] W. P. Hastings, C. A. Koehler, E. L. Bailey, D. O. De Haan, Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 2005, 39, 8728.
| Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2jsLvF&md5=f58c3e82f131de993f307f39740a7ec1CAS | 16323769PubMed |
[30] R. M. Healy, B. Temime, K. Kuprovskyte, J. C. Wenger, Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene. Environ. Sci. Technol. 2009, 43, 1884.
| Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFShs7Y%3D&md5=c3fa91c8e4f7f5a4513eb5897fecdeb7CAS | 19368187PubMed |
[31] L. Jia, Y. F. Xu, Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci. Technol. 2014, 48, 1.
| Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCitrnL&md5=f979cb9f06fe1277f83b946fb5b23033CAS |
[32] Y. F. Xu, L. Jia, M. F. Ge, L. Du, G. C. Wang, D. X. Wang, A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Chin. Sci. Bull. 2006, 51, 2839.
| A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlaitLvF&md5=0ffac1ca2fc773ea78be0d4e723efb4cCAS |
[33] L. Du, Y. L. Xu, M. F. Ge, L. Jia, G. C. Wang, D. X. Wang, Smog chamber simulation of atmospheric photochemical reactions of acetylene and NOx. Environ. Sci. 2007, 28, 482.
| 1:CAS:528:DC%2BD2sXmslyks70%3D&md5=87b5bb75c26573736ddca4d33c590e64CAS |
[34] Y. Z. Shi, Y. F. Xu, L. Jia, Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295–351 K. Int. J. Chem. Kinet. 2011, 43, 238.
| Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295–351 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFSmt7c%3D&md5=d168ed449159e5c7b84cffcdf755b3f1CAS |
[35] L. Jia, Y. F. Xu, M. F. Ge, L. Du, G. S. Zhuang, Smog chamber studies of ozone formation potentials for isopentane. Chin. Sci. Bull. 2009, 54, 4624.
| Smog chamber studies of ozone formation potentials for isopentane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlemtg%3D%3D&md5=2b69a1afad2e2ea90d78f50717523996CAS |
[36] L. Jia, Y. F. Xu, Y. Z. Shi, Investigation of the ozone formation potential for ethanol using a smog chamber. Chin. Sci. Bull. 2012, 57, 4472.
| Investigation of the ozone formation potential for ethanol using a smog chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslaksb%2FI&md5=dac3cfdf0c8ee7127c4717b164b026e3CAS |
[37] Y. Gao, S. B. Chen, L. E. Yu, Efflorescence relative humidity of airborne sodium chloride particles: a theoretical investigation. Atmos. Environ. 2007, 41, 2019.
| Efflorescence relative humidity of airborne sodium chloride particles: a theoretical investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCktg%3D%3D&md5=9a75d836ed79edb82a30100d6294ae57CAS |
[38] G. S. Hu, Y. F. Xu, L. Jia, Smog chamber simulation of atmospheric photochemical reactions of propene and NOx. Acta Chimi. Sin. 2011, 69, 1593.
| 1:CAS:528:DC%2BC3MXhtFaisLzP&md5=067e931f952a32ba975acc902495ba02CAS |
[39] G. S. Hu, Y. F. Xu, L. Jia, Effects of relative humidity on the characterization of a photochemical smog chamber. J. Environ. Sci. 2011, 23, 2013.
| Effects of relative humidity on the characterization of a photochemical smog chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyksbw%3D&md5=fbc1759f9270da9d40eb4b7769f3b5feCAS |
[40] C. L. Loza, A. W. H. Chan, M. M. Galloway, F. N. Keutsch, R. C. Flagan, J. H. Seinfeld, Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 2010, 44, 5074.
| Characterization of vapor wall loss in laboratory chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVahsb0%3D&md5=5634f0f4cd690b1659046b9cb6026001CAS | 20527767PubMed |
[41] I. N. Tang, Phase transformation and growth of hygroscopic aerosols, in Aerosol Chemical Processes in the Environment (Eds K. R. Spurny, D. Hochrainer) 2000, pp.61–80 (CRC Press LLC: Boca Raton, FL).
[42] C. Liu, B. W. Chu, Y. C. Liu, Y. C. Liu, H. He, X. Y. Zhang, J. H. Li, J. M. Hao, Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-pinene/NOx photooxidation. Atmos. Environ. 2013, 77, 781.
| Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-pinene/NOx photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1alsLbO&md5=4ccc656440b198d5d38c39f722354086CAS |
[43] C. Liu, Q. X. Ma, B. W. Chu, Y. C. Liu, H. He, X. Y. Zhang, J. H. Li, J. M. Hao, Effect of aluminium dust on secondary organic aerosol formation in m-xylene/NOx photooxidation. Sci. China Earth Sci. 2015, 58, 245.
| Effect of aluminium dust on secondary organic aerosol formation in m-xylene/NOx photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKmtb%2FO&md5=91e3e4cbe45ae92f5a6d03ef8feb91cbCAS |
[44] Y. Ming, L. M. Russell, Predicted hygroscopic growth of sea-salt aerosol. J. Geophys. Res. 2001, 106, 28 259.
| Predicted hygroscopic growth of sea-salt aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Grtbw%3D&md5=bc393216201f2d79f8643b977660504dCAS |
[45] G. Biskos, L. M. Russell, P. R. Buseck, S. T. Martin, Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett. 2006, 33, L07801.
| Nanosize effect on the hygroscopic growth factor of aerosol particles.Crossref | GoogleScholarGoogle Scholar |
[46] D. W. Hu, L. P. Qiao, J. M. Chen, X. N. Ye, X. Yang, T. T. Cheng, W. Fang, Hygroscopicity of inorganic aerosols: size and relative humidity effects on the growth factor. Aerosol Air Qual. Res. 2010, 10, 255.
| Hygroscopicity of inorganic aerosols: size and relative humidity effects on the growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFKlurs%3D&md5=4be646485417c4f9f78bc8249e90f265CAS |
[47] D. Gupta, H. Kim, G. Park, X. Li, H.-J. Eom, C.-U. Ro, Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates. Atmos. Chem. Phys. 2015, 15, 3379.
| Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXls1Kms7Y%3D&md5=0fb80a3a1308654f59f962188894937bCAS |
[48] V. Michaud, I. El Haddad, Y. Liu, K. Sellegri, P. Laj, P. Villani, D. Picard, N. Marchand, A. Monod, In-cloud processes of methacrolein under simulated conditions – Part 3. Hygroscopic and volatility properties of the formed secondary organic aerosol. Atmos. Chem. Phys. 2009, 9, 5119.
| In-cloud processes of methacrolein under simulated conditions – Part 3. Hygroscopic and volatility properties of the formed secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhsrvI&md5=35096d039b86488e7b783a97c14a56fcCAS |
[49] C. J. Kampf, E. M. Waxman, J. G. Slowik, J. Dommen, L. Pfaffenberger, A. P. Praplan, A. S. H. Prévôt, U. Baltensperger, T. Hoffmann, R. Volkamer, Effective Henry’s Law partitioning and the salting constant of glyoxal in aerosols containing sulfate. Environ. Sci. Technol. 2013, 47, 4236.
| Effective Henry’s Law partitioning and the salting constant of glyoxal in aerosols containing sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslahtLo%3D&md5=f9a4931014e52e415a8fee1546a5822cCAS | 23534917PubMed |
[50] M. Jang, R. M. Kamens, Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626.
| Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFynurw%3D&md5=f2fc2d2c063a8e27bff27f32cebc6401CAS | 11783638PubMed |
[51] M. Jang, N. M. Czoschke, S. Lee, R. M. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814.
| Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSntLk%3D&md5=8c40cbd4d75bf1298df6e998df8f91d8CAS | 12399587PubMed |
[52] K. W. Loeffler, C. A. Koehler, N. M. Paul, D. O. De Haan, Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environ. Sci. Technol. 2006, 40, 6318.
| Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptlelu7k%3D&md5=73070e25112be990fc1195477be3523fCAS | 17120559PubMed |
[53] L. Jia, Y. F. Xu, Y. Z. Shi, Characterization of photochemical smog chamber and initial experiments. Environ. Sci. 2011, 32, 351.
[54] M. T. Leu, R. S. Timonen, L. F. Keyser, Y. L. Yung, Heterogeneous reactions of HNO3(g) + NaCl(s) → HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) → ClNO2 + NaNO3(s). J. Phys. Chem. 1995, 99, 13 203.
| Heterogeneous reactions of HNO3(g) + NaCl(s) → HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) → ClNO2 + NaNO3(s).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVKrsrk%3D&md5=d950bf3dc67ffd45fa5a0e9f5d8d364bCAS |
[55] S. Hatakeyama, N. Washida, H. Akimoto, Rate constants and mechanisms for the reaction of OH (OD) radicals with acetylene, propyne, and 2-butyne in air at 297 ± 2 K. J. Phys. Chem. 1986, 90, 173.
| Rate constants and mechanisms for the reaction of OH (OD) radicals with acetylene, propyne, and 2-butyne in air at 297 ± 2 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xosl2ksw%3D%3D&md5=4916855e7aa945c81482464fd4cc627aCAS |
[56] C. N. Plum, E. Sanhueza, R. Atkinson, W. P. L. Carter, J. N. Pitts, Hydroxyl radical rate constants and photolysis rates of α-dicarbonyls. Environ. Sci. Technol. 1983, 17, 479.
| Hydroxyl radical rate constants and photolysis rates of α-dicarbonyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVCju7g%3D&md5=318146aa62c621b93619e91ffec5d3edCAS | 22283167PubMed |
[57] J. Liggio, S. M. Li, R. Mclaren, Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304.
| Reactive uptake of glyoxal by particulate matter.Crossref | GoogleScholarGoogle Scholar |
[58] H. S. S. Ip, X. H. H. Huang, J. Z. Yu, Effective Henry’s Law constants of glyoxal, glyoxylic acid, and glycolic acid. Geophys. Res. Lett. 2009, 36, L01802.
| Effective Henry’s Law constants of glyoxal, glyoxylic acid, and glycolic acid.Crossref | GoogleScholarGoogle Scholar |
[59] S. L. Clegg, P. Brimblecombe, A. S. Wexler, A thermodynamic model of the system H+–NH4+–Na+–SO42––NO3––Cl––H2O at 298.15 K. J. Phy. Chem. A 1998, 102, 2155.
| A thermodynamic model of the system H+–NH4+–Na+–SO42––NO3––Cl––H2O at 298.15 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlekt7c%3D&md5=1785348d8a1ff3e7bf9b2aa837c3c1beCAS |
[60] X. Zhang, C. D. Cappa, S. H. Jathar, R. C. McVay, J. J. Ensberg, M. J. Kleeman, J. H. Seinfeld, Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2014, 111, 5802.
| Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlSrt7c%3D&md5=5608d528c1c7f79a6ffe67ef91862a2bCAS | 24711404PubMed |
[61] L. Jia, Y. F. Xu, Ozone and secondary organic aerosol formation from ethylene–NOx–NaCl irradiations under different relative humidity conditions. J. Atmos. Chem. 2015, [Published online early 10 September 2015]
| Ozone and secondary organic aerosol formation from ethylene–NOx–NaCl irradiations under different relative humidity conditions.Crossref | GoogleScholarGoogle Scholar |
[62] C. C. Chang, U. Sree, Y. S. Lin, J. G. Lo, An examination of 7:00–9:00 PM ambient air volatile organics in different seasons of Kaohsiung city, southern Taiwan. Atmos. Environ. 2005, 39, 867.
| An examination of 7:00–9:00 PM ambient air volatile organics in different seasons of Kaohsiung city, southern Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVChug%3D%3D&md5=7310a4c5dc9d5368a22d4368de198f90CAS |
[63] B. Ervens, R. Volkamer, Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219.
| Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlams7k%3D&md5=c26b637f5fbe153452a9fec2400dde92CAS |
[64] H. J. Lim, A. G. Carlton, B. J. Turpin, Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 2005, 39, 4441.
| Isoprene forms secondary organic aerosol through cloud processing: model simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrsrg%3D&md5=3d75cad68d430c6eed66deb29997aa11CAS | 16047779PubMed |
[65] J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Laeys, A. Orooshian, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
| Evidence for organosulfates in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=a1bc7c44d64a3fa51741ebc0724303b5CAS | 17310716PubMed |
[66] J. H. Tang, L. Y. Chan, C. Y. Chan, Y. S. Li, C. C. Chang, S. C. Liu, D. Wu, Y. D. Li, Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China. Atmos. Environ. 2007, 41, 8620.
| Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOjtLbK&md5=509b94ce2f896e1eec0b0c1c6db72118CAS |
[67] A. Wiegele, N. Glatthor, M. Höpfner, U. Grabowski, S. Kellmann, A. Linden, G. Stiller, T. von Clarmann, Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements. Atmos. Meas. Tech. 2012, 5, 723.
| Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Shu7jO&md5=95d5897ddead8de96748dc3f3d28bbb2CAS |
[68] T. M. Fu, D. J. Jacob, D. K. Henze, F. Wittrock, J. P. Burrows, M. Vrekoussis, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113, D15303.
| Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |