Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Automatic and predictive fractionation of organic micropollutants in contaminated water

Marine Brogat A B , Estelle Baures A B , Amelie Sellier A B , Fabien Mercier A B , Marie Doloy A B , Olivier Thomas A B and Benoit Roig C D
+ Author Affiliations
- Author Affiliations

A Advanced School of Public Health (EHESP), Rennes, Sorbonne Paris Cité, Avenue du Professeur Léon Bernard CS 74312, F-35043 Rennes Cedex, France.

B National Institute for Health and Medical Research (INSERM) U1085 – Institute of Research in Environment and Health (IRSET), Environment and Health Research laboratory (LERES), Avenue du Professeur Léon Bernard CS 74312, F-35043 Rennes Cedex, France.

C University of Nimes, EA7352 Detection, assessment, management of Chronic and Emerging Risks (CHROME), rue du Dr Georges Salan, F-30021 Nimes, France.

D Corresponding author. Email: benoit.roig@unimes.fr

Environmental Chemistry 13(4) 688-698 https://doi.org/10.1071/EN15135
Submitted: 30 June 2015  Accepted: 17 October 2015   Published: 5 February 2016

Environmental context. The safeguarding of water supplies and drinking water is a major issue when considering human health risk management. In this context, an automatic and on-site fractionation system for the detection of organic contaminants has been developed. The main goal of this system is to establish an initial diagnosis by identifying a class of substances involved in a case of pollution.

Abstract. This paper proposes a new approach for the preconcentration, fractionation, prediction and detection of organic micropollutants in water. The main aim of this study was to implement an innovative fractionation method and a prediction model based on the physicochemical properties of compounds and interactions with the sorbent of solid-phase extraction cartridges. Two sorbents (Strata-SAX and Oasis-HLB) and three specific eluting solvents (mixture of methanol and sodium chloride and mixtures of acetonitrile and ultrapure water) were used to separate organic compounds into five specific fractions according to their physicochemical properties (anionic and cationic or neutral compounds with various polarity). More than 75 molecules (43 molecules individually studied and a mixture with 43 molecules, including 11 molecules individually studied) including pesticides, pharmaceuticals, endocrine disruptors and polycyclic aromatic hydrocarbons, with various properties were studied, and the results showed that the elution fraction can be predicted for more than 85 % of the compounds. This methodology could simplify the analytical chain by reducing detailed analysis on limited categories of compounds, and could be used for a rapid and on-site screening of organic compounds.

Additional keywords: diagnosis, high performance liquid chromatography, spectrophotometry, pollution.


References

[1]  E. H. Hansen, M. Miró, How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analyses. TrAC – Trends Analyt. Chem. 2007, 26, 18.
How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFeltg%3D%3D&md5=b3b47cbebef58003817263d1a1f3be96CAS |

[2]  M. Miró, V. Cerdà, J. M. Estela, Multisyringe flow injection analysis: characterization and applications. TrAC – Trends Analyt. Chem. 2002, 21, 199.
Multisyringe flow injection analysis: characterization and applications.Crossref | GoogleScholarGoogle Scholar |

[3]  V. Cerdà, A. Cerdà, A. Cladera, M. Oms, F. Mas, E. Gómez, F. Bauzá, M. Miró, R. Forteza, J. M. Estela, Monitoring of environmental parameters by sequential injection analysis. TrAC –. Trends Analyt. Chem. 2001, 20, 407.
Monitoring of environmental parameters by sequential injection analysis. TrAC –.Crossref | GoogleScholarGoogle Scholar |

[4]  A. M. Pimenta, M. C. B. S. M. Montenegro, A. N. Araújo, J. M. Calatayud, Application of sequential injection analysis to pharmaceutical analysis. J. Pharm. Biomed. Anal. 2006, 40, 16.
Application of sequential injection analysis to pharmaceutical analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFCitw%3D%3D&md5=c89ed4c71385fada5ed06d7e802f243aCAS | 16326061PubMed |

[5]  F. Jiao, H.-W. Gao, On-site solid-phase extraction and application to in situ preconcentration of heavy metals in surface water. Environ. Monit. Assess. 2013, 185, 39.
On-site solid-phase extraction and application to in situ preconcentration of heavy metals in surface water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWiu73M&md5=7b7bca467d65fb8a1b9a51e42b223f1fCAS | 22286838PubMed |

[6]  F. Gosetti, U. Chiuminatto, D. Zampieri, E. Mazzucco, E. Robotti, G. Calabrese, M. C. Gennaro, E. Marengo, Determination of perfluorochemicals in biological, environmental and food samples by an automated on-line solid-phase extraction ultra-high-performance liquid chromatography–tandem mass spectrometry method. J. Chromatogr. A 2010, 1217, 7864.
Determination of perfluorochemicals in biological, environmental and food samples by an automated on-line solid-phase extraction ultra-high-performance liquid chromatography–tandem mass spectrometry method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGrs77L&md5=c2eb258044c770677abdd86e95a94139CAS | 21071035PubMed |

[7]  M. Seifrtová, A. Pena, C. M. Lino, P. Solich, Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal. Bioanal. Chem. 2008, 391, 799.
Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection.Crossref | GoogleScholarGoogle Scholar | 18425644PubMed |

[8]  J. E. Renew, C.-H. Huang, Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid-phase extraction and liquid chromatography–electrospray mass spectrometry. J. Chromatogr. A 2004, 1042, 113.
Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid-phase extraction and liquid chromatography–electrospray mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1ant7k%3D&md5=cfce9fafabab34b204b2e814ae545bacCAS | 15296395PubMed |

[9]  J. A. Izbicki, I. M. Pimentel, R. Johnson, G. R. Aiken, J. Leenheer, Concentration, UV-spectroscopic characteristics and fractionation of DOC in stormflow from an urban stream, southern California, USA. Environ. Chem. 2007, 4, 35.
Concentration, UV-spectroscopic characteristics and fractionation of DOC in stormflow from an urban stream, southern California, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqsr4%3D&md5=99b766572b7c884b04db50217fa26b2fCAS |

[10]  W. Buchanan, F. Roddick, N. Porter, M. Drikas, Fractionation of UV and VUV pretreated natural organic matter from drinking water. Environ. Sci. Technol. 2005, 39, 4647.
Fractionation of UV and VUV pretreated natural organic matter from drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvF2hs7o%3D&md5=ad07abe7a2239850d582cb77e047b082CAS | 16047805PubMed |

[11]  J. Moon, S.-H. Kim, J. Cho, Characterizations of natural organic matter as nano particle using flow field-flow fractionation. Colloids Surf. A Physicochem. Eng. Asp. 2006, 287, 232.
Characterizations of natural organic matter as nano particle using flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFamt70%3D&md5=88ef55a9445e1dfabba74167940930d1CAS |

[12]  C. W. Cuss, C. Guéguen, Determination of relative molecular weights of fluorescent components in dissolved organic matter using asymmetrical flow field-flow fractionation and parallel factor analysis. Anal. Chim. Acta 2012, 733, 98.
Determination of relative molecular weights of fluorescent components in dissolved organic matter using asymmetrical flow field-flow fractionation and parallel factor analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Wntr0%3D&md5=c9d20885cd494e4e2d85074a5f7ad936CAS | 22704382PubMed |

[13]  B. Stolpe, L. Guo, A. M. Shiller, M. Hassellöv, Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation. Mar. Chem. 2010, 118, 119.
Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFeksbY%3D&md5=6c868afcd7781bffaecdb28c89dbee08CAS |

[14]  M. Brogat, A. Cadiere, A. Sellier, O. Thomas, E. Baures, B. Roig, MSPE/UV for field detection of micropollutants in water. Microchem. J. 2013, 108, 215.
MSPE/UV for field detection of micropollutants in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFyisLc%3D&md5=88a97ce6719a636fc1b5c562d22d0e77CAS |

[15]  V. Ducrot, A. R. R. Pery, L. Lagadic, Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis. Philos. Trans. R. Soc. Lond. – B Biol. Sci. 2010, 365, 3485.
Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis.Crossref | GoogleScholarGoogle Scholar | 20921047PubMed |

[16]  H. Azejjel, C. del Hoyo, K. Draoui, M. S. Rodríguez-Cruz, M. J. Sánchez-Martín, Natural and modified clays from Morocco as sorbents of ionizable herbicides in aqueous medium. Desalination 2009, 249, 1151.
Natural and modified clays from Morocco as sorbents of ionizable herbicides in aqueous medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWnsLvN&md5=7c7470d7354c020f7be54f75f5c127a8CAS |

[17]  S. Jara, C. Lysebo, T. Greibrokk, E. Lundanes, Determination of phthalates in water samples using polystyrene solid-phase extraction and liquid chromatography quantification. Anal. Chim. Acta 2000, 407, 165.
Determination of phthalates in water samples using polystyrene solid-phase extraction and liquid chromatography quantification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpsFSgtQ%3D%3D&md5=9b0aacab73d34036c4b8d1e191bf0775CAS |

[18]  X. Jing, S. Bing, W. Xiaoyan, S. Xiaojie, W. Yongning, A study on bisphenol A, nonylphenol, and octylphenol in human urine samples detected by SPE-UPLC-MS. Biomed. Environ. Sci. 2011, 24, 40.
A study on bisphenol A, nonylphenol, and octylphenol in human urine samples detected by SPE-UPLC-MS.Crossref | GoogleScholarGoogle Scholar | 21440838PubMed |

[19]  J. Sánchez-Avila, J. Bonet, G. Velasco, S. Lacorte, Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant. Sci. Total Environ. 2009, 407, 4157.
Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant.Crossref | GoogleScholarGoogle Scholar | 19362327PubMed |

[20]  G. Gatidou, N. S. Thomaidis, A. S. Stasinakis, T. D. Lekkas, Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography–mass spectrometry. J. Chromatogr. A 2007, 1138, 32.
Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlalt7rE&md5=8025bdd5453ad4d961fa4025c38990b5CAS | 17070818PubMed |

[21]  J. Rodier, B. Legube, N. Merlet, R. Brunet, L’Analyse de L’Eau – 9ème Édition – Eaux Naturelles, Eaux Résiduaires, Eau de Mer 2009 (Dunod: Paris).

[22]  K. Stoob, H. P. Singer, C. W. Goetz, M. Ruff, S. R. Mueller, Fully automated online solid-phase extraction coupled directly to liquid chromatography–tandem mass spectrometry: quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. J. Chromatogr. A 2005, 1097, 138.
Fully automated online solid-phase extraction coupled directly to liquid chromatography–tandem mass spectrometry: quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1egtbfF&md5=7ebdb9b00b36551ba5cc1628db914e29CAS | 16298193PubMed |

[23]  M. J. García-Galán, M. S. Díaz-Cruz, D. Barceló, Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS/MS). Talanta 2010, 81, 355.
Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS/MS).Crossref | GoogleScholarGoogle Scholar | 20188931PubMed |

[24]  M. J. García-Galán, T. Garrido, J. Fraile, A. Ginebreda, M. S. Díaz-Cruz, D. Barceló, Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). J. Hydrol. 2010, 383, 93.
Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain).Crossref | GoogleScholarGoogle Scholar |

[25]  F. Guo, Q. Liu, G. Qu, S. Song, J. Sun, J. Shi, G. B. Jiang, Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1281, 9.
Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit12iu74%3D&md5=8882048fb7cda14afe41d86633a03994CAS | 23398990PubMed |

[26]  N. Negreira, M. López de Alda, D. Barceló, On-line solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J. Chromatogr. A 2013, 1280, 64.
On-line solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1emtrY%3D&md5=c1d69ccea7cfc64c0af396dcf745476bCAS | 23357749PubMed |

[27]  R. A. Trenholm, B. J. Vanderford, S. A. Snyder, On-line solid phase extraction LC–MS/MS analysis of pharmaceutical indicators in water: a green alternative to conventional methods. Talanta 2009, 79, 1425.
On-line solid phase extraction LC–MS/MS analysis of pharmaceutical indicators in water: a green alternative to conventional methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2lsb8%3D&md5=5bbb880bfb77f58c50acccc4680d3d8aCAS | 19635380PubMed |

[28]  M. Köck-Schulmeyer, A. Ginebreda, C. Postigo, T. Garrido, J. Fraile, M. López de Alda, D. Barceló, Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE Spain). Sci. Total Environ. 2014, 470–471, 1087.
Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE Spain).Crossref | GoogleScholarGoogle Scholar | 24239830PubMed |

[29]  H. Singer, S. Jaus, I. Hanke, A. Lück, J. Hollender, A. C. Alder, Determination of biocides and pesticides by on-line solid-phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environ. Pollut. 2010, 158, 3054.
Determination of biocides and pesticides by on-line solid-phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFamu7nP&md5=b755e3869c8ea36fc362c6db227d60a6CAS | 20663596PubMed |

[30]  M. C. Hurtado-Sánchez, R. Romero-González, M. I. Rodríguez-Cáceres, I. Durán-Merás, A. G. Frenich, Rapid and sensitive on-line solid-phase extraction–ultra-high-performance liquid chromatography–electrospray-tandem mass spectrometry analysis of pesticides in surface waters. J. Chromatogr. A 2013, 1305, 193.
Rapid and sensitive on-line solid-phase extraction–ultra-high-performance liquid chromatography–electrospray-tandem mass spectrometry analysis of pesticides in surface waters.Crossref | GoogleScholarGoogle Scholar | 23885668PubMed |

[31]  F. Gosetti, U. Chiuminatto, E. Mazzucco, E. Robotti, G. Calabrese, M. C. Gennaro, E. Marengo, Simultaneous determination of thirteen polycyclic aromatic hydrocarbons and twelve aldehydes in cooked food by an automated on-line solid-phase extraction–ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 6308.
Simultaneous determination of thirteen polycyclic aromatic hydrocarbons and twelve aldehydes in cooked food by an automated on-line solid-phase extraction–ultra-high-performance liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjtrnF&md5=a428822b0bef7bf70e0ffd3bf5f2ca4eCAS | 21791341PubMed |

[32]  J. Regueiro, A. E. Rossignoli, G. Álvarez, J. Blanco, Automated on-line solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry for determination of lipophilic marine toxins in shellfish. Food Chem. 2011, 129, 533.
Automated on-line solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry for determination of lipophilic marine toxins in shellfish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCgtrs%3D&md5=051f9c24426cb98043efa2a030bae365CAS |

[33]  Y. Niu, J. Zhang, Y. Wu, B. Shao, Analysis of bisphenol A and alkylphenols in cereals by automated on-line solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2012, 60, 6116.
Analysis of bisphenol A and alkylphenols in cereals by automated on-line solid-phase extraction and liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslaisr8%3D&md5=691a7901850ec5d7858a940dff41216eCAS | 22646661PubMed |

[34]  M. F. El-Shahat, N. Burham, S. M. A. Azeem, Flow injection analysis–solid-phase extraction (FIA-SPE) method for preconcentration and determination of trace amounts of penicillins using methylene blue grafted polyurethane foam. J. Hazard. Mater. 2010, 177, 1054.
Flow injection analysis–solid-phase extraction (FIA-SPE) method for preconcentration and determination of trace amounts of penicillins using methylene blue grafted polyurethane foam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisV2ltb8%3D&md5=0f7ff994f1e18bc041ae000c570709bfCAS | 20106592PubMed |

[35]  E. Jagerdeo, M. A. Montgomery, R. P. Karas, M. Sibum, A fast method for screening and/or quantitation of tetrahydrocannabinol and metabolites in urine by automated SPE/LC/MS/MS. Anal. Bioanal. Chem. 2010, 398, 329.
A fast method for screening and/or quantitation of tetrahydrocannabinol and metabolites in urine by automated SPE/LC/MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFOitrY%3D&md5=92dff3d951bf9bba35cef5471973332cCAS | 20582401PubMed |

[36]  P. Panuwet, J. V. Nguyen, P. Kuklenyik, S. O. Udunka, L. L. Needham, D. B. Barr, Quantification of atrazine and its metabolites in urine by on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2008, 391, 1931.
Quantification of atrazine and its metabolites in urine by on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFaktrY%3D&md5=8f4aa70e59e454def8bf7a90bdb25bb7CAS | 18454284PubMed |

[37]  E. M. Suenaga, D. R. Ifa, A. C. Cruz, R. Pereira, E. Abib, M. Tominga, C. R. Nakaie, Automated determination of venlafaxine in human plasma by on-line SPE-LC-MS/MS. Application to a bioequivalence study. J. Sep. Sci. 2009, 32, 637.
Automated determination of venlafaxine in human plasma by on-line SPE-LC-MS/MS. Application to a bioequivalence study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt12rsbo%3D&md5=c4ee21b395b7ca3684c5d83eaebe4cd1CAS | 19212975PubMed |

[38]  A. M. Idris, A. O. Alnajjar, Exploiting sequential injection analysis technique to automate on-line sample treatment and quantitative determination of morphine in human urine. Talanta 2008, 77, 522.
Exploiting sequential injection analysis technique to automate on-line sample treatment and quantitative determination of morphine in human urine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWktrnO&md5=4b0fcb792b39d4048e070a409cafd305CAS |

[39]  L. Osemwengie, S. Steinberg, On-site solid-phase extraction and laboratory analysis of ultra-trace synthetic musks in municipal sewage effluent using gas chromatography–mass spectrometry in the full-scan mode. J. Chromatogr. A 2001, 932, 107.
On-site solid-phase extraction and laboratory analysis of ultra-trace synthetic musks in municipal sewage effluent using gas chromatography–mass spectrometry in the full-scan mode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVSgtrY%3D&md5=92fd11e14c17f546f09548fa608b4dfcCAS |

[40]  J. P. Lafleur, A. A. Rackov, S. McAuley, E. D. Salin, Miniaturised centrifugal solid-phase extraction platforms for in-field sampling, preconcentration and spectrometric detection of organic pollutants in aqueous samples. Talanta 2010, 81, 722.
Miniaturised centrifugal solid-phase extraction platforms for in-field sampling, preconcentration and spectrometric detection of organic pollutants in aqueous samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2iuro%3D&md5=26e201ba6131c1aeffbdd781fc2f6a2cCAS | 20188988PubMed |

[41]  P. López-Roldán, M. J. L. de Alda, D. Barceló, Simultaneous determination of selected endocrine disrupters (pesticides, phenols and phthalates) in water by in-field solid-phase extraction (SPE) using the prototype PROFEXS followed by on-line SPE (PROSPEKT) and analysis by liquid chromatography–atmospheric pressure chemical ionisation-mass spectrometry. Anal. Bioanal. Chem. 2004, 378, 599.
Simultaneous determination of selected endocrine disrupters (pesticides, phenols and phthalates) in water by in-field solid-phase extraction (SPE) using the prototype PROFEXS followed by on-line SPE (PROSPEKT) and analysis by liquid chromatography–atmospheric pressure chemical ionisation-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 13680063PubMed |

[42]  M. J. Wells, L. Z. Yu, Solid-phase extraction of acidic herbicides. J. Chromatogr. A 2000, 885, 237.
Solid-phase extraction of acidic herbicides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlKmsr4%3D&md5=ce11da736467d7bd1be9b7187ae833d5CAS | 10941675PubMed |

[43]  J. Liu, C. Qian, Hydrophobic coefficients of s-triazine and phenylurea herbicides. Chemosphere 1995, 31, 3951.
Hydrophobic coefficients of s-triazine and phenylurea herbicides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVertrw%3D&md5=038fe630ba93e95b0e281e0d2f705ad1CAS |

[44]  J. W. Millard, F. A. Alvarez-Núñez, S. H. Yalkowsky, Solubilization by cosolvents. Int. J. Pharm. 2002, 245, 153.
Solubilization by cosolvents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFygsrc%3D&md5=3173493232c523df49beaf1deb5ca93cCAS |

[45]  K. Nödler, T. Licha, K. Bester, M. Sauter, Development of a multi-residue analytical method, based on liquid chromatography–tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J. Chromatogr. A 2010, 1217, 6511.
Development of a multi-residue analytical method, based on liquid chromatography–tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples.Crossref | GoogleScholarGoogle Scholar | 20832069PubMed |

[46]  Y. Ran, Y. He, G. Yang, J. L. H. Johnson, S. H. Yalkowsky, Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere 2002, 48, 487.
Estimation of aqueous solubility of organic compounds by using the general solubility equation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOmtbw%3D&md5=a10c6cf69f95ed54ae9513336e782d64CAS | 12146628PubMed |

[47]  R. A. Trenholm, B. J. Vanderford, J. C. Holady, D. J. Rexing, S. A. Snyder, Broad-range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography–tandem mass spectrometry. Chemosphere 2006, 65, 1990.
Broad-range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqsb%2FI&md5=72d0e29d9d0cdbe431cfb27e7eb586b3CAS | 16949633PubMed |

[48]  W. Mnif, A. I. H. Hassine, A. Bouaziz, A. Bartegi, O. Thomas, B. Roig, Effect of endocrine disruptor pesticides: a review. Int. J. Environ. Res. Public Health 2011, 8, 2265.
Effect of endocrine disruptor pesticides: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVKlur0%3D&md5=02fac2352308b4bb1e869c9a7977dfebCAS | 21776230PubMed |

[49]  A. Moral, M. D. Sicilia, S. Rubio, D. Pérez-Bendito, Multifunctional sorbents for the extraction of pesticide multiresidues from natural waters. Anal. Chim. Acta 2008, 608, 61.
Multifunctional sorbents for the extraction of pesticide multiresidues from natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1KnsA%3D%3D&md5=19168f95a8ccce94b8bdec9c88a7209bCAS | 18206995PubMed |

[50]  M. E. Harnly, A. Bradman, M. Nishioka, T. E. McKone, D. Smith, R. McLaughlin, G. Kavanagh-Baird, R. Castorina, B. Eskenazi, Pesticides in dust from homes in an agricultural area. Environ. Sci. Technol. 2009, 43, 8767.
Pesticides in dust from homes in an agricultural area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlegu77I&md5=723318c03e86635e06aa1324679b6818CAS | 19943644PubMed |

[51]  M. Gfrerer, T. Wenzl, X. Quan, B. Platzer, E. Lankmayr, Occurrence of triazines in surface and drinking water of Liaoning Province in eastern China. J. Biochem. Biophys. Methods 2002, 53, 217.
Occurrence of triazines in surface and drinking water of Liaoning Province in eastern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotF2htr8%3D&md5=acc228c91d1bf831842bd89bf9beff45CAS | 12406604PubMed |

[52]  J. Lezamiz, J. A. Jönsson, Development of a simple hollow fibre-supported liquid membrane extraction method to extract and preconcentrate dinitrophenols in environmental samples at ng L–1 level by liquid chromatography. J. Chromatogr. A 2007, 1152, 226.
Development of a simple hollow fibre-supported liquid membrane extraction method to extract and preconcentrate dinitrophenols in environmental samples at ng L–1 level by liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1WrtLo%3D&md5=b82776f269375b7658e94550041bb47eCAS | 17182046PubMed |

[53]  B. Chefetz, Y. I. Bilkis, T. Polubesova, Sorption–desorption behavior of triazine and phenylurea herbicides in Kishon River sediments. Water Res. 2004, 38, 4383.
Sorption–desorption behavior of triazine and phenylurea herbicides in Kishon River sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSiur%2FF&md5=678ea02c9e33d9df30ab916bde224953CAS | 15556213PubMed |

[54]  P. Gramatica, A. Di Guardo, Screening of pesticides for environmental partitioning tendency. Chemosphere 2002, 47, 947.
Screening of pesticides for environmental partitioning tendency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFKqtrk%3D&md5=faed3496def99790ef599ee3b9c92a90CAS | 12108701PubMed |

[55]  S. A. Snyder, S. Adham, A. M. Redding, F. S. Cannon, J. DeCarolis, J. Oppenheimer, E. C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156.
Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KitbfF&md5=7a4c5c7118da28a0e20a5f0bfd39fa21CAS |

[56]  D. M. Pavlović, S. Babić, A. J. M. Horvat, M. Kaštelan-Macan, Sample preparation in analysis of pharmaceuticals. TrAC – Trends Analyt. Chem. 2007, 26, 1062.
Sample preparation in analysis of pharmaceuticals.Crossref | GoogleScholarGoogle Scholar |

[57]  R. S. Tavares, F. C. Martins, P. J. Oliveira, J. Ramalho-Santos, F. P. Peixoto, Parabens in male infertility – is there a mitochondrial connection? Reprod. Toxicol. 2009, 27, 1.
Parabens in male infertility – is there a mitochondrial connection?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKisbo%3D&md5=1de6c4d6c9dd25fe41a177dc530077efCAS | 19007877PubMed |

[58]  B. Kasprzyk-Hordern, R. M. Dinsdale, A. J. Guwy, Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 132.
Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yisLg%3D&md5=d20bb9dd5616d278ff2a91a6a370e947CAS | 17559858PubMed |

[59]  J. Láng, L. Kőhidai, Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena. Chemosphere 2012, 89, 592.
Effects of the aquatic contaminant human pharmaceuticals and their mixtures on the proliferation and migratory responses of the bioindicator freshwater ciliate Tetrahymena.Crossref | GoogleScholarGoogle Scholar | 22698373PubMed |

[60]  H. M. Do Luu, J. C. Hutter, Pharmacokinetic modeling of 4,4′-methylenedianiline released from reused polyurethane dialyzer potting materials. J. Biomed. Mater. Res. 2000, 53, 276.
Pharmacokinetic modeling of 4,4′-methylenedianiline released from reused polyurethane dialyzer potting materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslems78%3D&md5=cbe243b7ff3d755161e08149a6e3c8a8CAS | 10813768PubMed |

[61]  J.-B. Baugros, B. Giroud, G. Dessalces, M.-F. Grenier-Loustalot, C. Cren-Olivé, Multiresidue analytical methods for the ultra-trace quantification of 33 priority substances present in the list of REACH in real water samples. Anal. Chim. Acta 2008, 607, 191.
Multiresidue analytical methods for the ultra-trace quantification of 33 priority substances present in the list of REACH in real water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1arsw%3D%3D&md5=f5fdf369c2f5894430199fb19b409559CAS | 18190808PubMed |

[62]  P. Tölgyessy, B. Vrana, Z. Krascsenits, Development of a screening method for the analysis of organic pollutants in water using dual stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry. Talanta 2011, 87, 152.
Development of a screening method for the analysis of organic pollutants in water using dual stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 22099662PubMed |

[63]  B. Cai, L. Xie, D. Yang, J.-P. Arcangeli, Toxicity evaluation and prediction of toxic chemicals on activated sludge system. J. Hazard. Mater. 2010, 177, 414.
Toxicity evaluation and prediction of toxic chemicals on activated sludge system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisV2ktr8%3D&md5=23c8080b71bee2337e82c0cf008bb06eCAS | 20060222PubMed |

[64]  W. Zhang, Y. Ni, Z. Sun, P. Zheng, W. Lin, P. Zhu, N. Ju, Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026: a practical process for high enantiopurity and product titer. Process Biochem. 2009, 44, 1270.
Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026: a practical process for high enantiopurity and product titer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKns7fJ&md5=9516ae1b7445198af4d01e3deaef3ed9CAS |

[65]  J. Kamga Wagheu, C. Forano, P. Besse-Hoggan, I. K. Tonle, E. Ngameni, C. Mousty, Electrochemical determination of mesotrione at organoclay-modified glassy carbon electrodes. Talanta 2013, 103, 337.
Electrochemical determination of mesotrione at organoclay-modified glassy carbon electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ymtrjJ&md5=139f2d1b3023da316a6f5cd4855752e7CAS | 23200396PubMed |

[66]  R. M. González-Rodríguez, B. Cancho-Grande, J. Simal-Gándara, Multiresidue determination of 11 new fungicides in grapes and wines by liquid–liquid extraction/clean-up and programmable temperature vaporization injection with analyte protectants/gas chromatography/ion-trap mass spectrometry. J. Chromatogr. A 2009, 1216, 6033.
Multiresidue determination of 11 new fungicides in grapes and wines by liquid–liquid extraction/clean-up and programmable temperature vaporization injection with analyte protectants/gas chromatography/ion-trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 19576591PubMed |

[67]  N. M. Satchivi, E. W. Stoller, L. M. Wax, D. P. Briskin, A non-linear dynamic simulation model for xenobiotic transport and whole-plant allocation following foliar application. III. Influence of chemical properties, plant characteristics, and environmental parameters on xenobiotic absorption and translocation. Pestic. Biochem. Physiol. 2001, 71, 77.
A non-linear dynamic simulation model for xenobiotic transport and whole-plant allocation following foliar application. III. Influence of chemical properties, plant characteristics, and environmental parameters on xenobiotic absorption and translocation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1aisrg%3D&md5=8825ffeebaa0899ef1e463f126a92969CAS |

[68]  P. P. Bolaños, R. Romero-González, A. G. Frenich, J. L. M. Vidal, Application of hollow-fibre liquid-phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2008, 1208, 16.
Application of hollow-fibre liquid-phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 18762301PubMed |

[69]  D. Barcelo, M. C. Hennion, Trace Determination of Pesticides and their Degradation Products in Water 1997 (Elsevier Science: Amsterdam).

[70]  I. K. Wittmer, H.-P. Bader, R. Scheidegger, H. Singer, A. Lück, I. Hanke, C. Carlsson, C. Stamm, Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Water Res. 2010, 44, 2850.
Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFGqsrs%3D&md5=532c2313bb0105257691ea8cd4ba6c46CAS | 20188390PubMed |

[71]  A. Kouzayha, A. Rahman Rabaa, M. Al Iskandarani, D. Beh, H. Budzinski, F. Jaber, Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography–mass spectrometry. Am. J. Anal. Chem. 2012, 03, 257.
Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GjurfO&md5=1f8ab18fe214d0a0b6e566774baf51c9CAS |

[72]  E. Izadi-Darbandi, A. Aliverdi, H. Hammami, Behavior of vegetable oils in relation to their influence on herbicides’ effectiveness. Ind. Crops Prod. 2013, 44, 712.
Behavior of vegetable oils in relation to their influence on herbicides’ effectiveness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCnur8%3D&md5=e42f9e81f3821ff866b664a68779f92eCAS |

[73]  S. J. Gluck, M. H. Benkö, R. K. Hallberg, K. P. Steele, Indirect determination of octanol–water partition coefficients by microemulsion electrokinetic chromatography. J. Chromatogr. A 1996, 744, 141.
Indirect determination of octanol–water partition coefficients by microemulsion electrokinetic chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvValsbk%3D&md5=5873331b734d38ea003f4bf64b3c70aeCAS |

[74]  N. Fohrer, A. Dietrich, O. Kolychalow, U. Ulrich, Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model. J. Environ. Qual. 2014, 43, 75.
Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model.Crossref | GoogleScholarGoogle Scholar | 25602542PubMed |

[75]  K. E. Pallett, S. M. Cramp, J. P. Little, P. Veerasekaran, A. J. Crudace, A. E. Slater, Isoxaflutole: the background to its discovery and the basis of its herbicidal properties. Pest Manag. Sci. 2001, 57, 133.
Isoxaflutole: the background to its discovery and the basis of its herbicidal properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpvF2jtg%3D%3D&md5=ff311d15368695e2d70fd112f3ffe5dfCAS | 11455644PubMed |

[76]  E. Papa, S. Castiglioni, P. Gramatica, V. Nikolayenko, O. Kayumov, D. Calamari, Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan). Water Res. 2004, 38, 3485.
Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGhu7c%3D&md5=ed765ef4cb7efeb1dfbe80d78fd50747CAS | 15325174PubMed |

[77]  D. A. Lambropoulou, I. K. Konstantinou, T. A. Albanis, Factors affecting multiresidue determination of priority herbicides when using solid-phase microextraction. J. AOAC Int. 2002, 85, 486.
| 1:CAS:528:DC%2BD38XivVyrtbo%3D&md5=318da9267bb3695012396b4bd6278668CAS | 11990036PubMed |

[78]  E. Argese, C. Bettiol, D. Marchetto, S. De Vettori, A. Zambon, P. Miana, P. F. Ghetti, Study on the toxicity of phenolic and phenoxy herbicides using the submitochondrial particle assay. Toxicol. In Vitro 2005, 19, 1035.
Study on the toxicity of phenolic and phenoxy herbicides using the submitochondrial particle assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SksL%2FK&md5=6df29f0cad5aeb1e49842839d784757cCAS | 16023322PubMed |

[79]  M. L. Hladik, E. J. Bouwer, A. L. Roberts, Neutral degradates of chloroacetamide herbicides: occurrence in drinking water and removal during conventional water treatment. Water Res. 2008, 42, 4905.
Neutral degradates of chloroacetamide herbicides: occurrence in drinking water and removal during conventional water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKnurbF&md5=b523e99b5d61151836d83c5b46cf5f65CAS | 18947850PubMed |

[80]  E. Pose-Juan, R. Rial-Otero, M. Paradelo, J. E. López-Periago, Influence of the adjuvants in a commercial formulation of the fungicide ‘Switch’ on the adsorption of their active ingredients: cyprodinil and fludioxonil, on soils devoted to vineyard. J. Hazard. Mater. 2011, 193, 288.
Influence of the adjuvants in a commercial formulation of the fungicide ‘Switch’ on the adsorption of their active ingredients: cyprodinil and fludioxonil, on soils devoted to vineyard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CksrjL&md5=1ffc54299866fbefc0c30fde7f1d143dCAS | 21868160PubMed |

[81]  W. L. Klotz, M. R. Schure, J. P. Foley, Determination of octanol–water partition coefficients of pesticides by microemulsion electrokinetic chromatography. J. Chromatogr. A 2001, 930, 145.
Determination of octanol–water partition coefficients of pesticides by microemulsion electrokinetic chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVyksLY%3D&md5=57bd035a7a1d80317c82fe358b5f90b5CAS | 11681572PubMed |

[82]  A. J. P. Brudenell, D. A. Baker, B. T. Grayson, Phloem mobility of xenobiotics: tabular review of physicochemical properties governing the output of the Kleier model. Plant Growth Regul. 1995, 16, 215.
Phloem mobility of xenobiotics: tabular review of physicochemical properties governing the output of the Kleier model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmslalu7c%3D&md5=d104ac3ac8fedcd3ff36497eb967e947CAS |

[83]  E. Hiller, Z. Krascsenits, S. Čerňanský, Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia. Bull. Environ. Contam. Toxicol. 2008, 80, 412.
Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFemtb4%3D&md5=e2fe5a5e0424190cc42585d5b0ec1497CAS | 18401535PubMed |

[84]  A. Conrad, O. Dedourge, R. Cherrier, M. Couderchet, S. Biagianti, Leaching of terbumeton and terbumeton-desethyl from mini-columns packed with soil aggregates in laboratory conditions. Chemosphere 2006, 65, 1600.
Leaching of terbumeton and terbumeton-desethyl from mini-columns packed with soil aggregates in laboratory conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagsbjP&md5=138fe2bd621c600d352355fd95c3379aCAS | 16674993PubMed |

[85]  R. Carabias Martínez, E. Rodríguez Gonzalo, M. E. Fernández Laespada, F. J. Sánchez San Román, Evaluation of surface- and ground-water pollution due to herbicides in agricultural areas of Zamora and Salamanca (Spain). J. Chromatogr. A 2000, 869, 471.
Evaluation of surface- and ground-water pollution due to herbicides in agricultural areas of Zamora and Salamanca (Spain).Crossref | GoogleScholarGoogle Scholar | 10720260PubMed |

[86]  I. Carpinteiro, M. Ramil, I. Rodríguez, R. Cela, Determination of fungicides in wine by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 7484.
Determination of fungicides in wine by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ntr%2FE&md5=664d3fae78333a9d981df0e2b130fb61CAS | 20971470PubMed |