The effect of pH, organic ligand chemistry and mineralogy on the sorption of beryllium over time
Vanessa Boschi A B and Jane K. Willenbring AA Department of Earth and Environmental Science, University of Pennsylvania, 251 Hayden Hall, 240 South 33rd Street, Philadelphia, PA 19104, USA.
B Corresponding author. Email: vaboschi@sas.upenn.edu
Environmental Chemistry 13(4) 711-722 https://doi.org/10.1071/EN15107
Submitted: 27 May 2015 Accepted: 26 November 2015 Published: 11 February 2016
Environmental context. Beryllium is a toxic environmental contaminant but has many industrial and scientific applications. Our work explores the effects of soil composition on beryllium retention, focussing on organic matter, mineralogy and pH and concludes that phosphorus and sulfur oxides in addition to soil acidity are strong controls on beryllium mobility. These results aid in future predictions regarding the fate of beryllium in the environment.
Abstract. Understanding the chemical controls on beryllium sorption is fundamental when assessing its mobility as a pollutant and interpreting its concentration as a geochemical tracer of erosion, weathering and landscape surface stability. In order to evaluate the interactions of beryllium with soil- and aquatic-related materials, we selected model organic compounds and minerals to perform sorption experiments. The retention of beryllium by each of these compounds and minerals was evaluated over a pH range of 3–6 and at various equilibration times to determine which conditions allowed the greatest retention of beryllium. We conclude that most beryllium sorption occurred within 24 h for both organic and mineral materials. However, equilibration required longer periods of time and was dependent on the solution pH and sorbent material. The pH exhibited a strong control on beryllium sorption with distribution coefficient (Kd) values increasing non-linearly with increasing pH. A system with a pH of 6 is likely to retain 79–2270 % more beryllium than the same system at a pH of 4. Phosphonate retained the greatest amount of beryllium, with Kd values 2–30× greater than all other materials tested at a pH of 6. Therefore, soils containing larger amounts of phosphorus-bearing minerals could result in greater retention of beryllium relative to phosphorus-limited soils. Overall, soil composition, with an emphasis on phosphorus oxide content and pH, is an important property to consider when evaluating the capacity of a system to retain beryllium.
References
[1] D. E. Granger, N. A. Lifton, J. K. Willenbring, A cosmic trip: 25 years of cosmogenic nuclides in geology. Geol. Soc. Am. Bull. 2013, 125, 1379.| A cosmic trip: 25 years of cosmogenic nuclides in geology.Crossref | GoogleScholarGoogle Scholar |
[2] P. J. Wallbrink, A. S. Murray, Distribution and variability of 7Be in soils under different surface cover conditions and its potential for describing soil redistribution processes. Water Resour. Res. 1996, 32, 467.
| Distribution and variability of 7Be in soils under different surface cover conditions and its potential for describing soil redistribution processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpsFyrsg%3D%3D&md5=10a32e9986acb1de8597eb571d015276CAS |
[3] J. K. Willenbring, F. von Blanckenburg, Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth Sci. Rev. 2010, 98, 105.
| Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislWiu7Y%3D&md5=54b4e0a30dfc0afd0ca75d0d4acc7d1dCAS |
[4] J. K. Willenbring, F. von Blanckenburg, Long-term stability of global erosion rates and weathering during late Cenozoic cooling. Nature 2010, 465, 211.
| Long-term stability of global erosion rates and weathering during late Cenozoic cooling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFOku7o%3D&md5=f64e9a9d55b0fe8ff5456a35e69261a4CAS | 20463736PubMed |
[5] J. M. Kaste, M. Baskaran, Meteoric 7Be and 10Be as process tracers in the environment, in Handbook of Environmental Isotope Geochemistry (Ed. M. Baskaran) 2011, Vol. 1, Ch. 5, pp. 61–86 (Springer: Heidelberg, Germany).
[6] F. von Blanckenburg, J. Bouchez, H. Wittmann, Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth Planet. Sci. Lett. 2012, 351–352, 295.
| Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio.Crossref | GoogleScholarGoogle Scholar |
[7] T. Taylor, M. Ding, D. Ehler, T. Foreman, J. Kaszuba, N. Sauer, Beryllium in the environment: a review. J. Environ. Sci. Health A 2003, 38, 439.
| Beryllium in the environment: a review.Crossref | GoogleScholarGoogle Scholar |
[8] A Comprehensive Assessment of Toxic Emissions from Coal-Fired Power Plants – Topical Report, DOE/MC/30097-5321 1996 (US Department of Energy: Grand Forks, ND, USA).
[9] Health Assessment Document for Beryllium 1987 (US Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office: Research Triangle Park, NC).
[10] L. Fishbein, Sources, transport and alterations of metal compounds: an overview. I. Arsenic beryllium, cadmium, chromium and nickel. Environ. Health Perspect. 1981, 40, 43.
| Sources, transport and alterations of metal compounds: an overview. I. Arsenic beryllium, cadmium, chromium and nickel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1eitrg%3D&md5=8d71863ccb4dd86b62c82cab37556948CAS | 7023934PubMed |
[11] Treatability Manual. Vol. 1. Treatability Data, EPA-600/8-80-042, I.4.4-1 to I.4.4-4 1981, US Environmental Protection Agency: Washington, DC, USA).
[12] Drinking Water Standards and Health Advisories, EPA 822-B-00-001 2000 (US Environmental Protection Agency, Office of Water: Washington, DC, USA).
[13] Toxicological Profile for Beryllium 2002 (US Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA).
[14] J. Vesely, S. A. Norton, P. Skrivan, V. Majer, P. Kram, T. Navratil, J. M. Kaste, Environmental chemistry of beryllium. Rev. Mineral Geochem. 2002, 50, 291.
| Environmental chemistry of beryllium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFGns7Y%3D&md5=a5593fe3180947fb955005cc5e144280CAS |
[15] K. R. Lum, K. L. Gammon, Geochemical availability of some trace and major elements in surficial sediments of the Detroit River and western Lake Erie. J. Great Lakes Res. 1985, 11, 328.
| Geochemical availability of some trace and major elements in surficial sediments of the Detroit River and western Lake Erie.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XnsVGktg%3D%3D&md5=1b732db0d095627365c4a4b389bcb056CAS |
[16] C. F. You, T. Lee, Y. H. Li, The partition of Be between soil and water. Chem. Geol. 1989, 77, 105.
| The partition of Be between soil and water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtlKrtLo%3D&md5=c1c3b8bbd8fac9c781b68bc3818f18c5CAS |
[17] Y. Takahashi, Y. Minai, S. Ambe, Y. Makide, F. Ambe, Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim. Cosmochim. Acta 1999, 63, 815.
| Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Snsr0%3D&md5=cd4987ee3f7f3d659d07f5753cf4fd6bCAS |
[18] J. Esteves Da Silva, A. Machado, Characterization of the binding sites for AlIII and BeII in a sample of marine fulvic acids. Mar. Chem. 1996, 54, 293.
| Characterization of the binding sites for AlIII and BeII in a sample of marine fulvic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1alt7o%3D&md5=e580ef9460fe42a1d677e3850de845e1CAS |
[19] L. Lundberg, T. Ticich, G. F. Herzog, T. Hughes, G. Ashley, R. K. Moniot, C. Tuniz, T. Krase, W. Savin, 10Be and 9Be in the Maurice River–Union Lake system of southern New Jersey. J. Geophys. Res. 1983, 88, 4498.
| 10Be and 9Be in the Maurice River–Union Lake system of southern New Jersey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVejsbg%3D&md5=efbf74f89415b1dcb96e7de710426bbcCAS |
[20] L. Alderighi, A. Vacca, F. Cecconi, S. Midollini, E. Chinea, S. Dominquez, A. Valle, D. Dakternieks, A. Duthi, Interaction of beryllium in aqueous solution with bidentate ligands containing phosphonate groups. Inorg. Chim. Acta 1999, 285, 39.
| Interaction of beryllium in aqueous solution with bidentate ligands containing phosphonate groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsl2lsg%3D%3D&md5=b007d4b94d90483b6d7d221b220f8b8bCAS |
[21] L. Alderighi, P. Gans, S. Midollini, A. Vacca, Aqueous solution chemistry of beryllium. Adv. Inorg. Chem. 2000, 50, 109.
| 1:CAS:528:DC%2BD3cXksVKktbc%3D&md5=706aadde52d61ad933db32b4e15dd693CAS |
[22] T. S. Keizer, N. N. Sauer, T. M. McCleskey, Beryllium binding at neutral pH: the importance of the Be–O–Be motif. J. Inorg. Biochem. 2005, 99, 1174.
| Beryllium binding at neutral pH: the importance of the Be–O–Be motif.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyrsL4%3D&md5=40524d0126c44cbf541c5266c1e2afa3CAS | 15833341PubMed |
[23] A. Mederos, S. Dominguez, E. Chinea, F. Brito, F. Cecconi, Review: new advances in the coordination chemistry of beryllium. J. Coord. Chem. 2001, 53, 191.
| Review: new advances in the coordination chemistry of beryllium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsV2htbc%3D&md5=5d2cbb4dfb9ccb27f2a8eeac7c0e8c86CAS |
[24] H. Schmidbaur, Recent contributions to the aqueous coordination chemistry of beryllium. Coord. Chem. Rev. 2001, 215, 223.
| Recent contributions to the aqueous coordination chemistry of beryllium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFCksL8%3D&md5=c74f2a1aea220c3d4bc0eea4cb3749e7CAS |
[25] C. Y. Wong, J. D. Woollins, Beryllium coordination chemistry. Coord. Chem. Rev. 1994, 130, 243.
| Beryllium coordination chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFajt70%3D&md5=3496d132a34929c34e161accd08a50b2CAS |
[26] L. Alderighi, S. Dominguez, P. Gans, S. Midollini, A. Sabatini, A. Vacca, Beryllium binding to adenosine-5′-phosphates in aqueous solution at 25 °C. J. Coord. Chem. 2009, 62, 14.
| Beryllium binding to adenosine-5′-phosphates in aqueous solution at 25 °C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqtbjN&md5=b3ccf213213ff0e98064662a4efc0a6fCAS |
[27] G. Mattock, Hydrolysis and aggregation of the beryllium ion. J. Am. Chem. Soc. 1954, 76, 4835.
| Hydrolysis and aggregation of the beryllium ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXhtVOhtQ%3D%3D&md5=664d0c3cf34b25a870f8b787ba634e51CAS |
[28] T. S. Keizer, T. M. McCleskey, Beryllium: inorganic chemistry, in Encyclopedia of Inorganic and Bioinorganic Chemistry 2011 (Wiley). Available at http://onlinelibrary.wiley.com/doi/10.1002/9781119951438.eibc0276/abstract;jsessionid=F13D10C4CD3E3B819349976DD49C7681.f03t01 [verified 4 February 2016].
[29] D. A. Everest, The Chemistry of Beryllium 1964 (Elsevier: New York).
[30] X. Yu, J. R. Doroghazi, S. C. Jangab, J. K. Zhanga, B. Circelloa, B. M. Griffin, D. P. Labedac, W. W. Metcalfa, Diversity and abundance of phosphonate biosynthetic genes in nature. Proc. Natl. Acad. Sci. USA 2013, 110, 20 759.
| Diversity and abundance of phosphonate biosynthetic genes in nature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVyksg%3D%3D&md5=a826fdbf9ca97ba1cea15e5caaeebfeaCAS |
[31] B. Nowack, A. T. Stone, Competitive adsorption of phosphate and phosphonates onto goethite. Water Res. 2006, 40, 2201.
| Competitive adsorption of phosphate and phosphonates onto goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt12rtbc%3D&md5=aaad59291300b703950f26ae5fd1c94dCAS | 16674984PubMed |
[32] S. L. Tisdale, W. L. Nelson, J. D. Beaton, J. L. Havlin, Soil Fertility and Fertilizers, 5th edn 1993 (MacMillan: New York).
[33] R. R. Gadde, H. A. Laitinen, Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 1974, 46, 2022.
| Studies of heavy metal adsorption by hydrous iron and manganese oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsVWgsL4%3D&md5=1511124605c490cc3ac250496612e479CAS |
[34] T. M. McCleskey, D. S. Ehler, T. S. Keizer, D. N. Asthagiri, L. R. Pratt, R. Michalczyk, B. L. Scott, Beryllium displacement of H+ from strong hydrogen bonds. Angew. Chem. 2007, 119, 2723.
| Beryllium displacement of H+ from strong hydrogen bonds.Crossref | GoogleScholarGoogle Scholar |
[35] A. Aldahan, Y. Haiping, G. Possnert, Distribution of beryllium between solution and minerals (biotite and albite) under atmospheric conditions and variable pH. Chem. Geol. 1999, 156, 209.
| Distribution of beryllium between solution and minerals (biotite and albite) under atmospheric conditions and variable pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslOjur0%3D&md5=418015b7f4fc71a9a4fedb18b51aa950CAS |
[36] N. Brady, R. R. Weil, The Nature and Properties of Soils 2008 (Pearson–Prentice Hall: Upper Saddle River, NJ, USA).