Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Organic sulfur and organic matter redox processes contribute to electron flow in anoxic incubations of peat

Zhi-Guo Yu A , Jörg Göttlicher B , Ralph Steininger B and Klaus-Holger Knorr A C
+ Author Affiliations
- Author Affiliations

A Ecohydrology and Biogeochemistry Group, University of Münster, Heisenbergstrasse 2, D-48149 Münster, Germany.

B ANKA Synchrotron Radiation Facility, Karlsruher Institut für Technologie (KIT), D-76344 Eggenstein-Leopoldshafen, Germany.

C Corresponding author. Email: kh.knorr@uni-muenster.de

Environmental Chemistry 13(5) 816-825 https://doi.org/10.1071/EN15091
Submitted: 7 May 2015  Accepted: 16 February 2016   Published: 7 April 2016

Environmental context. The extent to which organic matter decomposition generates carbon dioxide or methane in anaerobic ecosystems is determined by the presence or absence of particular electron acceptors. Evaluating carbon dioxide and methane production in anaerobic incubation of peat, we found that organic matter predominated as an electron acceptor over considered inorganic electron acceptors. We also observed changes in organic sulfur speciation suggesting a contribution of organic sulfur species to the electron-accepting capacity of organic matter.

Abstract. An often observed excess of CO2 production over CH4 production in freshwater ecosystems presumably results from a direct or indirect role of organic matter (OM) as electron acceptor, possibly supported by a cycling of oxidised and reduced sulfur species. To confirm the role of OM electron-accepting capacities (EACOM) in anaerobic microbial respiration and to elucidate internal sulfur cycling, peat soil virtually devoid of inorganic electron acceptors was incubated under anaerobic conditions. Thereby, production of CO2 and CH4 at a cumulative ratio of 3.2 : 1 was observed. From excess CO2 production and assuming a nominal oxidation state of carbon in OM of zero, we calculated a net consumption rate of EACOM of 2.36 µmol electron (e) cm–3 day–1. Addition of sulfate (SO42–) increased CO2 and suppressed CH4 production. Moreover, subtracting the EAC provided though SO42–, net consumption rates of EACOM had increased to 3.88–4.85 µmol e cm–3 day–1, presumably owing to a re-oxidation of sulfide by OM at sites otherwise not accessible for microbial reduction. As evaluated by sulfur K-edge X-ray absorption near-edge structure spectroscopy, bacterial sulfate reduction presumably involved not only a recycling of inorganic sulfur species, but also a sulfurisation of OM, yielding reduced organic sulfur, and changes in oxidised organic sulfur species. Organic matter thus contributes to anaerobic respiration: (i) directly by EAC of redox-active functional groups; (ii) directly by oxidised organic sulfur; and (iii) indirectly by re-oxidation of sulfide to maintain bacterial sulfate reduction.

Additional keywords: electron transfer, freshwater systems, methanogenesis, XANES spectroscopy.


References

[1]  D. R. Lovley, Dissimilatory FeIII and MnIV reduction. Microbiol. Rev. 1991, 55, 259.
| 1:CAS:528:DyaK3MXltFSjtLY%3D&md5=cf2710b7ef452575bbb3b8961254c157CAS | 1886521PubMed |

[2]  D. R. Lovley, D. F. Dwyer, M. J. Klug, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 1982, 43, 1373.
| 1:CAS:528:DyaL38XksFahurs%3D&md5=51d4a00a01d0e4b41f294d89d3b712e9CAS | 16346033PubMed |

[3]  H. D. Klüber, R. Conrad, Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice-field soil. FEMS Microbiol. Ecol. 1998, 25, 301.
Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice-field soil.Crossref | GoogleScholarGoogle Scholar |

[4]  C. Achtnich, F. Bak, R. Conrad, Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 1995, 19, 65.
Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslGgsrY%3D&md5=0d901689ab7d28360c08952d5f9f2848CAS |

[5]  D. R. Lovley, E. J. Phillips, Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 1986, 52, 751.
| 1:CAS:528:DyaL28XmtFekur4%3D&md5=adcded18f6683a7bfcc508044e90fb22CAS | 16347168PubMed |

[6]  E. E. Roden, M. M. Urrutia, Influence of biogenic FeII on bacterial crystalline FeIII oxide reduction. Geomicrobiol. J. 2002, 19, 209.
Influence of biogenic FeII on bacterial crystalline FeIII oxide reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslGrtr4%3D&md5=603bc3ae9b731c09bd3b78a76e54f24eCAS |

[7]  S. E. Mikaloff Fletcher, P. P. Tans, L. M. Bruhwiler, J. B. Miller, M. Heimann, CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochem. Cycles 2004, 18,
| 1:CAS:528:DC%2BD2MXhs1Wgtbc%3D&md5=fef348f21f71d7112eec7d81ca25a875CAS |

[8]  E. R. C. Hornibrook, F. J. Longstaffe, W. S. Fyfe, Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochim. Cosmochim. Acta 1997, 61, 745.
Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVOqtLg%3D&md5=0978f04c18abc4c757a4120e1c913a2cCAS |

[9]  G. B. Avery, R. D. Shannon, J. R. White, C. S. Martens, M. J. Alperin, Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland. Global Biogeochem. Cycles 1999, 13, 475.
Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOrurs%3D&md5=6b684f45ca5c6284a05dcdb5e8f1543fCAS |

[10]  R. Segers, S. W. M. Kengen, Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biol. Biochem. 1998, 30, 1107.
Methane production as a function of anaerobic carbon mineralization: a process model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlKnt7s%3D&md5=98992fc9620f9ba1368ec820449562caCAS |

[11]  T. Heitmann, T. Goldhammer, J. Beer, C. Blodau, Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob. Change Biol. 2007, 13, 1771.
Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog.Crossref | GoogleScholarGoogle Scholar |

[12]  D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, J. C. Woodward, Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445.
Humic substances as electron acceptors for microbial respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Olurw%3D&md5=4fcfe32dca6f9d6bae10ca07bfc75d0cCAS |

[13]  D. T. Scott, D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, D. R. Lovley, Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984.
Quinone moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVKmurs%3D&md5=21f5ae199b3b5392710ec1e220577233CAS |

[14]  E. E. Roden, A. Kappler, I. Bauer, J. Jiang, A. Paul, R. Stoesser, H. Konishi, H. F. Xu, Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 2010, 3, 417.
Extracellular electron transfer through microbial reduction of solid-phase humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSrtrk%3D&md5=ee804bceef9a92fe4f2b3306a02367bbCAS |

[15]  L. Klüpfel, A. Piepenbrock, A. Kappler, M. Sander, Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, 195.
Humic substances as fully regenerable electron acceptors in recurrently anoxic environments.Crossref | GoogleScholarGoogle Scholar |

[16]  M. Bauer, T. Heitmann, D. L. Macalady, C. Blodau, Electron transfer capacities and reaction kinetics of peat dissolved organic matter. Environ. Sci. Technol. 2007, 41, 139.
Electron transfer capacities and reaction kinetics of peat dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cgu7jF&md5=c3ed8b606a6f0bfde0b4333b42b640fbCAS | 17265939PubMed |

[17]  J. K. Keller, K. K. Takagi, Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 2013, 4,
Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil.Crossref | GoogleScholarGoogle Scholar |

[18]  M. Pester, K.-H. Knorr, M. W. Friedrich, M. Wagner, A. Loy, Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Front. Microbiol. 2012, 3, 72.
Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSltLbI&md5=2ae0a8a97c25d4c3d230eafe732891e6CAS | 22403575PubMed |

[19]  T. Heitmann, C. Blodau, Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 2006, 235, 12.
Oxidation and incorporation of hydrogen sulfide by dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeiu7bP&md5=4dee9c60988ff086112c9ddb87e83857CAS |

[20]  Z. Yu, S. Peiffer, J. Goettlicher, K.-H. Knorr, Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous hydrogen sulfide by dissolved organic matter. Environ. Sci. Technol. 2015, 49, 5441.
Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous hydrogen sulfide by dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFenurw%3D&md5=ff0a68c8940b2c2150e63aa215eae27dCAS | 25850807PubMed |

[21]  J. B. Yavitt, G. E. Lang, R. K. Wieder, Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry 1987, 4, 141.
Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog, West Virginia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnsVaksg%3D%3D&md5=42525322552dfa11c96ccefc28aadfdeCAS |

[22]  M. A. Vile, S. D. Bridgham, R. K. Wieder, M. Novák, Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochem. Cycles 2003, 17,
Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFygurc%3D&md5=1907a408fa9f67781bfe87344b823459CAS |

[23]  D. E. Canfield, B. P. Boudreau, A. Mucci, J. K. Gundersen, The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake, Bermuda. Geochim. Cosmochim. Acta 1998, 62, 767.
The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake, Bermuda.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFGjtrw%3D&md5=0a6c3ce466aae9e7ca14b7d20954dc28CAS |

[24]  D. Solomon, J. Lehmann, K. K. de Zarruk, J. Dathe, J. Kinyangi, B. Liang, S. Machado, Speciation and long- and short-term molecular-level dynamics of soil organic sulfur studied by X-ray absorption near-edge structure spectroscopy. J. Environ. Qual. 2011, 40, 704.
Speciation and long- and short-term molecular-level dynamics of soil organic sulfur studied by X-ray absorption near-edge structure spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Oqsb0%3D&md5=0aa68ef0f7742a771b3538eacb8cd065CAS | 21546657PubMed |

[25]  S. G. Wakeham, J. S. Sinninghe Damsté, M. E. L. Kohnen, J. W. De Leeuw, Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochim. Cosmochim. Acta 1995, 59, 521.
Organic sulfur compounds formed during early diagenesis in Black Sea sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjslKgs7g%3D&md5=82bb43b2e2a8cb2831ac82204ea18118CAS |

[26]  N. R. Urban, K. Ernst, S. Bernasconi, Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochim. Cosmochim. Acta 1999, 63, 837.
Addition of sulfur to organic matter during early diagenesis of lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Sns78%3D&md5=05d9e04c8c8044e796cbcecf391adbe6CAS |

[27]  D. Solomon, J. Lehmann, C. E. Martínez, Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Sci. Soc. Am. J. 2003, 67, 1721.
Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCksLY%3D&md5=44a857143f2bb5316f9506270299fb0bCAS |

[28]  D. W. Anderson, Decomposition of organic matter and carbon emissions from soils, in Advances in Soil Science: Soils and Global Change 1995, pp. 165–176 (CRC Press: Boca Raton, FL, USA).

[29]  J. D. Cline, Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 1969, 14, 454.
Spectrophotometric determination of hydrogen sulfide in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksFegu70%3D&md5=25fbce5c97d3e586f311abd49bc33fa0CAS |

[30]  M. P. Lau, M. Sander, J. Gelbrecht, M. Hupfer, Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry 2015, 123, 49.
Solid phases as important electron acceptors in freshwater organic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGmsg%3D%3D&md5=aa9052a7490867bbeab6c26687b5212dCAS |

[31]  A. E. Harvey, J. A. Smart, E. S. Amis, Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Anal. Chem. 1955, 27, 26.
Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXislaqsQ%3D%3D&md5=d0d05ac8e8138ea1415a3eb9671d24ddCAS |

[32]  W. Stumm, J. J. Morgan (Eds), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn 1995 (Wiley: New York).

[33]  B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=aab816df64cb85e43a1e6d0ae6595091CAS | 15968136PubMed |

[34]  A. Manceau, K. L. Nagy, Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. Geochim. Cosmochim. Acta 2012, 99, 206.
Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ksrzP&md5=a532a43319a57e5a4357e7a95033db07CAS |

[35]  R. Conrad, Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999, 28, 193.
Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvF2nsro%3D&md5=10757bfbeef6f99ca6e34e6b090e6ce2CAS |

[36]  E. E. Roden, R. G. Wetzel, Organic carbon oxidation and suppression of methane production by microbial FeIII oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 1996, 41, 1733.
Organic carbon oxidation and suppression of methane production by microbial FeIII oxide reduction in vegetated and unvegetated freshwater wetland sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1yisr0%3D&md5=8f5ac9c043a3b946827f5dc8986feaffCAS |

[37]  D. R. Lovley, J. C. Woodward, Mechanisms for chelator stimulation of microbial FeIII oxide reduction. Chem. Geol. 1996, 132, 19.
Mechanisms for chelator stimulation of microbial FeIII oxide reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFarsLc%3D&md5=d19a55a9a4f7756fa9cdd13b174296a1CAS |

[38]  A. Vairavamurthy, K. Mopper, Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter. Nature 1987, 329, 623.
Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVamt7o%3D&md5=6219d0f054c2f1011d7c85654193dd91CAS |

[39]  M. A. Vile, S. D. Bridgham, R. K. Wieder, Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecol. Appl. 2003, 13, 720.
Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland.Crossref | GoogleScholarGoogle Scholar |

[40]  C. Blodau, Carbon cycling in peatlands – a review of processes and controls. Environ. Res. 2002, 10, 111.
Carbon cycling in peatlands – a review of processes and controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsF2ku7w%3D&md5=9206af761c4b9e8912edcf1f5070a98cCAS |

[41]  S. D. Bridgham, K. Updegraff, J. Pastor, Carbon, nitrogen and phosphorus mineralization in northern wetlands. Ecology 1998, 79, 1545.
Carbon, nitrogen and phosphorus mineralization in northern wetlands.Crossref | GoogleScholarGoogle Scholar |

[42]  J. B. van Hulzen, R. Segers, P. M. van Bodegom, P. A. Leffelaar, Temperature effects on soil methane production: an explanation for observed variability. Soil Biol. Biochem. 1999, 31, 1919.
Temperature effects on soil methane production: an explanation for observed variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVOitbw%3D&md5=d5dbbf73164d932ab8d39c7bd4405db4CAS |

[43]  M. Aeschbacher, M. Sander, R. P. Schwarzenbach, Novel electrochemical approach to assess the redox properties of humic substances. Environ. Sci. Technol. 2010, 44, 87.
Novel electrochemical approach to assess the redox properties of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShsrnM&md5=24d0c7b7517cd9ec86dfcebddf26da50CAS | 19950897PubMed |

[44]  K. N. Duddleston, M. A. Kinney, R. P. Kiene, M. E. Hines, Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Global Biogeochem. Cycles 2002, 16, 11-1.
Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product.Crossref | GoogleScholarGoogle Scholar |

[45]  A. J. B. Zehnder, W. Stumm, Geochemistry and biogeochemistry of anaerobic habitats, in Biology of Anaerobic Microorganisms (Ed. A. J. B. Zehnder) 1988, pp. 1–38 (Wiley: New York).

[46]  K.-H. Knorr, C. Blodau, Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biol. Biochem. 2009, 41, 1187.
Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGktL0%3D&md5=87874df9ea075528ac7cd1f2bee1d5ecCAS |

[47]  K.-H. Knorr, DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction–oxidation cycles? Biogeosciences 2013, 10, 891.
DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction–oxidation cycles?Crossref | GoogleScholarGoogle Scholar |

[48]  S. C. Neubauer, K. Givler, S. Valentine, J. P. Megonigal, Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 2005, 86, 3334.
Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry.Crossref | GoogleScholarGoogle Scholar |

[49]  J. K. Keller, P. B. Weisenhorn, J. P. Megonigal, Humic acids as electron acceptors in wetland decomposition. Soil Biol. Biochem. 2009, 41, 1518.
Humic acids as electron acceptors in wetland decomposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1OlurY%3D&md5=af5737652a822699079a87db82bc6b22CAS |

[50]  J. K. Keller, S. D. Bridgham, Pathways of anaerobic carbon cycling across an ombrotrophic–minerotrophic peatland gradient. Limnol. Oceanogr. 2007, 52, 96.
Pathways of anaerobic carbon cycling across an ombrotrophic–minerotrophic peatland gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKgs7w%3D&md5=849eb2fdbfa3fbfdaffbef27b8cdcdabCAS |

[51]  K. A. Brown, Formation of organic sulphur in anaerobic peat. Soil Biol. Biochem. 1986, 18, 131.
Formation of organic sulphur in anaerobic peat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Cisbw%3D&md5=ef524ff65c261275db1a977e91160164CAS |

[52]  T. G. Ferdelman, T. M. Church, G. W. Luther, Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochim. Cosmochim. Acta 1991, 55, 979.
Sulfur enrichment of humic substances in a Delaware salt marsh sediment core.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlahtrY%3D&md5=85ee7772cd5ed5ffe7202285285dd6b0CAS |

[53]  V. Brüchert, L. M. Pratt, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St Andrew Bay, Florida, USA. Geochim. Cosmochim. Acta 1996, 60, 2325.
Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St Andrew Bay, Florida, USA.Crossref | GoogleScholarGoogle Scholar |

[54]  K. Xia, F. Weesner, W. F. Bleam, P. A. Helmke, P. R. Bloom, U. L. Skyllberg, XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Sci. Soc. Am. J. 1998, 62, 1240.
XANES studies of oxidation states of sulfur in aquatic and soil humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOqt7c%3D&md5=770108752a6bfb6ab8b65bd8ffe6e509CAS |

[55]  J. Prietzel, A. Botzaki, N. Tyufekchieva, M. Brettholle, J. Thieme, W. Klysubun, Sulfur speciation in soil by S K-Edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting. Environ. Sci. Technol. 2011, 45, 2878.
Sulfur speciation in soil by S K-Edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqtro%3D&md5=4b735f4eb8758d47123d9a529e825f77CAS | 21405114PubMed |

[56]  F. Einsiedl, B. Mayer, T. Schäfer, Evidence for incorporation of H2S in groundwater fulvic acids from stable isotope ratios and sulfur K-edge X-ray absorption near-edge structure spectroscopy. Environ. Sci. Technol. 2008, 42, 2439.
Evidence for incorporation of H2S in groundwater fulvic acids from stable isotope ratios and sulfur K-edge X-ray absorption near-edge structure spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVCms7k%3D&md5=8df5fb145616944ac2a9917ade35c473CAS | 18504978PubMed |

[57]  M. Hoffmann, C. Mikutta, R. Kretzschmar, Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy. Environ. Sci. Technol. 2012, 46, 11788.
Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWhur7J&md5=be3d62ec63712dc37801dbed9ae58bb5CAS | 23075303PubMed |

[58]  J. Prietzel, J. Thieme, M. Salomé, H. Knicker, Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biol. Biochem. 2007, 39, 877.
Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSrurY%3D&md5=7ecf322cf82d20e6fa2b1e3fa9f4099dCAS |

[59]  R. Schauder, E. Müller, Polysulfide as a possible substrate for sulfur-reducing bacteria. Arch. Microbiol. 1993, 160, 377.
Polysulfide as a possible substrate for sulfur-reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislWlsw%3D%3D&md5=59562849183161af3793e7dbf7dac7caCAS |

[60]  N. Ratasuk, M. A. Nanny, Characterization and quantification of reversible redox sites in humic substances. Environ. Sci. Technol. 2007, 41, 7844.
Characterization and quantification of reversible redox sites in humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCisL3I&md5=9d45ccfe0872fac55cd1050a213b0ec3CAS | 18075097PubMed |

[61]  M. A. Kertesz, Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev. 2000, 24, 135.
| 1:CAS:528:DC%2BD3cXhslamurY%3D&md5=32071ade8851c571ae4f2f8da6763763CAS | 10717312PubMed |