Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

Meghan A. Dovick A , Thomas R. Kulp A C , Robert S. Arkle B and David S. Pilliod B
+ Author Affiliations
- Author Affiliations

A Department of Geological Sciences and Environmental Studies, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA.

B US Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID 83706, USA.

C Corresponding author. Email: tkulp@binghamton.edu

Environmental Chemistry 13(1) 149-159 https://doi.org/10.1071/EN15046
Submitted: 3 March 2015  Accepted: 15 June 2015   Published: 13 October 2015

Environmental context. The food web behaviours of As and Sb are poorly understood. We compare As and Sb bioaccumulation in a contaminated freshwater ecosystem. Metalloid accumulation decreased with increasing trophic level. Bioprecipitated minerals in microbial mats represent a direct route of uptake (by ingestion) of metalloids to tadpoles, which contained the highest concentrations ever reported. We demonstrate food web bioaccumulation, but not biomagification, of As and Sb. We also report an unexpectedly high tolerance of tadpoles to metalloid toxicity.

Abstract. We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers > tadpoles > macroinvertebrates > trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg–1 As and 675 mg kg–1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg–1 (As) and 375 mg kg–1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

Additional keyword: tadpoles.


References

[1]  W. T. Dushenko, D. A. Bright, K. J. Reimer, Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients. Aquat. Bot. 1995, 50, 141.
Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFChsLo%3D&md5=d4535dad7da52ba477f07b7d72bd7a03CAS |

[2]  L. F. Villarroel, J. R. Miller, P. J. Lechier, D. Germanoski, Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, Southern Bolivia. Environ. Geol. 2006, 51, 283.
Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, Southern Bolivia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFShtLrP&md5=a5642e0d63c3f83809534f42cc0fabcdCAS |

[3]  G. Morin, G. Calas, Arsenic in soils, mine tailings, and former industrial sites. Elements 2006, 2, 97.
Arsenic in soils, mine tailings, and former industrial sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVars7w%3D&md5=4b34f0b975690f5bf6dbbb046d8f1a1bCAS |

[4]  C. Casiot, M. Ujevic, M. Munoz, J. L. Seidel, F. Elbaz-Poulichet, Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl. Geochem. 2007, 22, 788.
Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVemurs%3D&md5=2117015b4d8c2e619127f35a6d15ffa2CAS |

[5]  K. Telford, W. Maher, F. Krikowa, S. Foster, M. J. Ellwood, P. M. Ashley, P. V. Lockwood, S. C. Wilson, Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ. Chem. 2009, 6, 133.
Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtro%3D&md5=3c46a075d506415383fafb2d868ea30aCAS |

[6]  J. Culioli, A. Fouquoire, C. Mori, A. Orsini, Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study. Aquat. Toxicol. 2009, 94, 286.
Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7nJ&md5=e19afd7670736760d63636027edb1fdaCAS | 19695721PubMed |

[7]  F. Liu, X. C. Le, A. McKnight-Whitford, Y. Xia, F. Wu, E. Elswick, C. C. Johnson, C. Zhu, C., Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Environ. Geochem. Health 2010, 32, 401.
C., Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKktr7M&md5=61e5d5ce7529fa38dda26f3998edc2b3CAS | 20101438PubMed |

[8]  Z. Fu, F. Wu, C. Mo, B. Liu, J. Zhu, Q. Deng, H. Liao, Y. Zhang, Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China. Microchem. J. 2011, 97, 12.
Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2rsr%2FE&md5=ac47404f23811380c6105b4f0abf1dc6CAS |

[9]  M. Filella, N. Belzile, Y. Chen, Antimony in the environment: a review focused on natural water: I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural water: I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=96ce02d14a9a90d618fd05eb2897e012CAS |

[10]  National Primary Drinking Water Standards 2009 (US Environmental Protection Agency, Office of Water Regulations and Standards, Criteria and Standards Division: Washington, DC).

[11]  R. S. Oremland, J. Stolz, The ecology of arsenic. Science 2003, 300, 939.
The ecology of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=4eb77d81fb1f2ecc7969fcaafbb3e61aCAS | 12738852PubMed |

[12]  J. Majzlan, B. Lalinská, M. Chovan, U. Bläß, B. Brecht, J. Göttlicher, R. Steininger, K. Hug, S. Ziegler, J. Gescher, A mineralogical, geochemical, and microbiogical assessment of the antimony-and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Mineral. 2011, 96, 1.
A mineralogical, geochemical, and microbiogical assessment of the antimony-and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1ejsw%3D%3D&md5=61fc9c28a6375c695df982e4d627c210CAS |

[13]  A. M. Farag, D. F. Woodward, J. N. Goldstein, W. Brumbaugh, J. S. Meyer, Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho. Arch. Environ. Contam. Toxicol. 1998, 34, 119.
Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXptV2qtg%3D%3D&md5=045127ac61cf6864c47430b44c232e41CAS | 9469853PubMed |

[14]  C. Y. Chen, C. L. Folt, Bioaccumulation and diminution of arsenic and lead in a freshwater food web. Environ. Sci. Technol. 2000, 34, 3878.
Bioaccumulation and diminution of arsenic and lead in a freshwater food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslWks7g%3D&md5=04a976534f7b8ac4c2e86b2307cad057CAS |

[15]  R. P. Mason, J. M. Laporte, S. Andres, Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch. Environ. Contam. Toxicol. 2000, 38, 283.
Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFaitL8%3D&md5=314ec8a7d197568cf31436b7d6ee60ccCAS | 10667925PubMed |

[16]  M. Duran, Y. Kara, G. K. Akyildiz, A. Ozdemir, Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak River (N Turkey) near the Sb-mining area. Bull. Environ. Contam. Toxicol. 2007, 78, 395.
Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak River (N Turkey) near the Sb-mining area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ymsL8%3D&md5=6430b1344aa6e3fca615be5e3c7d2140CAS | 17618389PubMed |

[17]  NPL Site Narrative for Stibnite/Yellow Pine Mining Area 2001 (US Environmental Protection Agency, Office of Solid Wastes and Emergency Response: Washington, DC).

[18]  Stibnite Area site characterization report: Volume I. T01050. Prepared for The Stibnite Area Site Characterization Voluntary Consent Order Respondents 2000 (URS Corporation: Denver, CO).

[19]  T. R. Kulp, L. G. Miller, F. Braiotta, S. M. Webb, B. D. Kocar, J. S. Blum, R. S. Oremland, Microbiological reduction of Sb(V) in anoxic freshwater sediments. Environ. Sci. Technol. 2014, 48, 218.
Microbiological reduction of Sb(V) in anoxic freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCis7rN&md5=b74367e5ba3478db3aa3ca179b3cad1aCAS | 24274659PubMed |

[20]  J. R. Garbarino, A. J. Bednar, M. R. Burkhardt, Methods of analysis by the US Geological Survey National Water Quality Laboratory – Arsenic speciation in natural-water samples using laboratory and field methods. US Geological Survey Water-Resources Investigations Report 2002 (US Geological Survey: Reston, VA). Available at http://nwql.usgs.gov/pubs/WRIR/WRIR-02-4144.pdf [Verified 26 August 2015].

[21]  J. Burger, J. Snodgrass, Heavy metals in bullfrog (Rana catesbeiana) tadpoles: effects of depuration before analysis. Environ. Toxicol. 1998, 17, 2203.
Heavy metals in bullfrog (Rana catesbeiana) tadpoles: effects of depuration before analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOlsb8%3D&md5=6ecc0cd285a96d99921e91ff4d184aa5CAS |

[22]  Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices 1996 (US Environmental Protection Agency, Office of Solid Wastes: Washington, DC).

[23]  D. J. Cain, S. N. Luoma, J. L. Carter, S. V. Fend, Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams. Can. J. Fish. Aquat. Sci. 1992, 49, 2141.
Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1emsg%3D%3D&md5=b8d32a749c36a54173d914284954cd58CAS |

[24]  P. Jankong, C. Chalhoub, N. Kienzl, W. Goessler, K. A. Francesconi, P. Visoottiviseth, Arsenic accumulation and speciation in freshwater fish living in arsenic-contaminated waters. Environ. Chem. 2007, 4, 11.
Arsenic accumulation and speciation in freshwater fish living in arsenic-contaminated waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqs7o%3D&md5=4d180a44b21a024b4dcdb26fa93f009bCAS |

[25]  D. R. Clark, R. Cantu, D. F. Cowman, D. J. Maxon, Uptake of arsenic and metals by tadpoles at a historically contaminated Texas site. Ecotoxicology 1998, 7, 61.
Uptake of arsenic and metals by tadpoles at a historically contaminated Texas site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtF2hsr8%3D&md5=f16e9dcc18f032cb993a75498f2345daCAS |

[26]  D. W. Sparling, P. T. Lowe, Metal concentrations of tadpoles in experimental ponds. Environ. Pollut. 1996, 91, 149.
Metal concentrations of tadpoles in experimental ponds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislyltA%3D%3D&md5=4627857ff36ebb5639c9ec6c548fcde6CAS | 15091435PubMed |

[27]  J. H. Roe, W. A. Hopkins, B. P. Jackson, Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes. Environ. Pollut. 2005, 136, 353.
Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlahu7k%3D&md5=8215859714534720ee45a5530356318eCAS | 15840543PubMed |

[28]  K. A. Rittle, J. I. Drever, P. J. Colberg, Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol. J. 1995, 13, 1.
Precipitation of arsenic during bacterial sulfate reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1Cjtrg%3D&md5=9e06b5835b3a219073ae14258e7b7dd7CAS |

[29]  P. A. O’Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13 703.
The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVygtrk%3D&md5=171b6e164e82608a35b3abb1fb858d46CAS |

[30]  C. A. Abin, J. T. Hollibaugh, Dissimilatory antimonite reduction and production of antimony trioxide microcrystals by a novel microorganism. Environ. Sci. Technol. 2014, 48, 681.
Dissimilatory antimonite reduction and production of antimony trioxide microcrystals by a novel microorganism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2mt7vE&md5=6ca8257bb0e3745e3130c9d32fe268e0CAS | 24319985PubMed |

[31]  J. L. Kerby, K. L. Richards-Hrdlicka, A. Storfer, D. K. Skelly, An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries? Ecol. Lett. 2010, 13, 60.
An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?Crossref | GoogleScholarGoogle Scholar | 19845728PubMed |