Isotopic evidence for the origin of dimethylsulfide and dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater lake
Michal Sela-Adler A , Ward Said-Ahmad B , Orit Sivan A , Werner Eckert C , Ronald P. Kiene D E and Alon Amrani B FA Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
B The institute of Earth Sciences, The Hebrew University, Jerusalem 91904, Israel.
C Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal 14950, Israel.
D Department of Marine Sciences, University of South Alabama, Mobile, AL 36688, USA.
E Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA.
F Corresponding author. Email: alon.amrani@mail.huji.ac.il
Environmental Chemistry 13(2) 340-351 https://doi.org/10.1071/EN15042
Submitted: 1 March 2015 Accepted: 14 August 2015 Published: 4 November 2015
Environmental context. The volatile sulfur compound, dimethylsulfide (DMS), plays a major role in the global sulfur cycle by transferring sulfur from aquatic environments to the atmosphere. Compared to marine environments, freshwater environments are under studied with respect to DMS cycling. The goal of this study was to assess the formation pathways of DMS in a freshwater lake using natural stable isotopes of sulfur. Our results provide unique sulfur isotopic evidence for the multiple DMS sources and dynamics that are linked to the various biogeochemical processes that occur in freshwater lake water columns and sediments.
Abstract. The volatile methylated sulfur compound, dimethylsulfide (DMS), plays a major role in the global sulfur cycle by transferring sulfur from aquatic environments to the atmosphere. The main precursor of DMS in saline environments is dimethylsulfoniopropionate (DMSP), a common osmolyte in algae. The goal of this study was to assess the formation pathways of DMS in the water column and sediments of a monomictic freshwater lake based on seasonal profiles of the concentrations and isotopic signatures of DMS and DMSP. Profiles of DMS in the epilimnion during March and June 2014 in Lake Kinneret showed sulfur isotope (δ34S) values of +15.8 ± 2.0 per mille (‰), which were enriched by up to 4.8 ‰ compared with DMSP δ34S values in the epilimnion at that time. During the stratified period, the δ34S values of DMS in the hypolimnion decreased to –7.0 ‰, close to the δ34S values of coexisting H2S derived from dissimilatory sulfate reduction in the reduced bottom water and sediments. This suggests that H2S was methylated by unknown microbial processes to form DMS. In the hypolimnion during the stratified period DMSP was significantly 34S enriched relative to DMS reflecting its different S source, which was mostly from sulfate assimilation. In the sediments, δ34S values of DMS were depleted by 2–4 ‰ relative to porewater (HCl-extracted) DMSP and enriched relative to H2S. This observation suggests two main formation pathways for DMS in the sediment, one from the degradation of DMSP and one from methylation of H2S. The present study provides isotopic evidence for multiple sources of DMS in stratified water bodies and complex DMSP–DMS dynamics that are linked to the various biogeochemical processes within the sulfur cycle.
Additional keywords: assimilatory sulfate reduction, dissimilatory sulfate reduction, sediment, sulfur isotope.
References
[1] T. Bates, B. Lamb, A. Guenther, J. Dignon, R. Stoiber, Sulfur emissions to the atmosphere from natural sourees. J. Atmos. Chem. 1992, 14, 315.| Sulfur emissions to the atmosphere from natural sourees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFalu78%3D&md5=e78bc2456d6d10c150c515242e621324CAS |
[2] M. O. Andreae, The ocean as a source of atmospheric sulfur compounds, in The Role of Air–Sea Exchange in Geochemical Cycling (Ed. P. Buat-Menard) 1986, pp. 331–362 (Reidel: Dordrect, Netherlands).
[3] R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
| Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=24299dba1956a59c2726d9e91321070cCAS |
[4] R. P. Kiene, Microbial cycling of organosulfur gases in marine and freshwater environments, in Cycling of Reduced Gases in the Hydrosphere (Eds D. Adams, S. Seitzinger, P. Crill) 1996, pp. 137–151 (E. Schweitzerbart'sche Verlagsbuchhandlung (Naglele u. Obermiller): Stuttgart).
[5] B. P. Lomans, A. Smolders, L. M. Intven, A. Pol, D. Op, C. Van Der Drift, Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl. Environ. Microbiol. 1997, 63, 4741.
| 1:CAS:528:DyaK2sXnvV2rtrY%3D&md5=723077d8ab5a9492219ab675b84d5a9dCAS | 16535751PubMed |
[6] R. P. Kiene, P. T. Visscher, Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl. Environ. Microbiol. 1987, 53, 2426.
| 1:CAS:528:DyaL2sXmtVCksb0%3D&md5=6d59ef7c5516a8acd62fbfd1b833184eCAS | 16347461PubMed |
[7] R. P. Kiene, M. E. Hines, Microbial formation of dimethyl sulfide in anoxic sphagnum peat. Appl. Environ. Microbiol. 1995, 61, 2720.
| 1:CAS:528:DyaK2MXms1Grs7w%3D&md5=5e60838720f3c63e478bddab70e8b313CAS | 16535080PubMed |
[8] S. Richards, J. Rudd, C. Kelly, Organic volatile sulfur in lakes ranging in sulfate and dissolved salt concentration over five orders of magnitude. Limnol. Oceanogr. 1994, 39, 562.
| Organic volatile sulfur in lakes ranging in sulfate and dissolved salt concentration over five orders of magnitude.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFahur8%3D&md5=eb16ad6d93f7900aef9a9f11eaec4a10CAS |
[9] S. Sharma, L. Barrie, D. Hastie, C. Kelly, Dimethyl sulfide emissions to the atmosphere from lakes of the Canadian boreal region. J. Geophys. Res. 1999, 104, 11 585.
| Dimethyl sulfide emissions to the atmosphere from lakes of the Canadian boreal region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsl2mu7s%3D&md5=e8e3c9873e70f8da850822e58ff68b55CAS |
[10] S. Wakeham, B. Howes, J. Dacey, R. Schwarzenbach, J. Zeyer, Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochim. Cosmochim. Acta 1987, 51, 1675.
| Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXks1CgtLY%3D&md5=cd60776987a376aadfdd658f61303f7cCAS |
[11] B. Lomans, C. Van der Drift, A. Pol, H. Op den Camp, Microbial cycling of volatile organic sulfur compounds. Cell. Mol. Life Sci. 2002, 59, 575.
| Microbial cycling of volatile organic sulfur compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlWmtb8%3D&md5=bbe7a57d48afa76b6307289d7aca9301CAS | 12022467PubMed |
[12] B. Ginzburg, I. Chalifa, J. Gun, I. Dor, O. Hadas, O. Lev, DMS formation by dimethylsulfoniopropionate route in freshwater. Environ. Sci. Technol. 1998, 32, 2130.
| DMS formation by dimethylsulfoniopropionate route in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslehsrg%3D&md5=bcfb2417346e7e35257b4024fffd5a86CAS |
[13] D. E. Canfield, Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 2001, 65, 1117.
| Isotope fractionation by natural populations of sulfate-reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlOisbs%3D&md5=06a01b8551b315d739f162266fe27ae6CAS |
[14] I. R. Kaplan, S. C. Rittenberg, Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 1964, 34, 195.
| Microbiological fractionation of sulphur isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksVagtrc%3D&md5=8637282809e708a6d3b67232e75b422eCAS | 14135528PubMed |
[15] U. G. Wortmann, S. M. Bernasconi, M. E. Böttcher, Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 2001, 29, 647.
| Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVOmtLk%3D&md5=929d3288ce1fdbf658c87a50c78bd504CAS |
[16] M. S. Sim, T. Bosak, S. Ono, Large sulfur isotope fractionation does not require disproportionation. Science 2011, 333, 74.
| Large sulfur isotope fractionation does not require disproportionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVGnu70%3D&md5=0c84690ece164e48baab97e373115725CAS | 21719675PubMed |
[17] B. Trust, B. Fry, Stable sulphur isotopes in plants: a review. Plant Cell Environ. 1992, 15, 1105.
| Stable sulphur isotopes in plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitV2gt7Y%3D&md5=676e01b6196b57c7f0dcaa3d6f516cb4CAS |
[18] A. Amrani, W. Said-Ahmad, Y. Shaked, R. P. Kiene, Sulfur isotope homogeneity of oceanic DMSP and DMS. Proc. Natl. Acad. Sci. USA 2013, 110, 18 413.
| Sulfur isotope homogeneity of oceanic DMSP and DMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVygsLjP&md5=7722c2bb3b3e3ddc72f62845f94805c9CAS |
[19] H. Oduro, K. L. van Alstyne, J. Farquhar, Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions. Proc. Natl. Acad. Sci. USA 2012, 109, 9012.
| Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovF2gtbs%3D&md5=e61e5ef469ed413ad2a5d0f7128b26b0CAS | 22586117PubMed |
[20] H. Oduro, A. Kamyshny, A. L. Zerkle, Y. Li, J. Farquhar, Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake. Geochim. Cosmochim. Acta 2013, 120, 251.
| Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOntrvE&md5=8f6f4aa62ce2e29922191e05f192ae9bCAS |
[21] W. Eckert, R. Conrad, Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study. Biogeochemistry 2007, 82, 67.
| Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWktrc%3D&md5=e3e128d2b7db4f8a8d970c67662b78a5CAS |
[22] H. Nakamura, K. Fujimaki, O. Sampei, A. Murai, Gonyol: methionine-induced sulfonium accumulation in a dinoflagellate Gonyaulax polyedra. Tetrahedron Lett. 1993, 34, 8481.
| Gonyol: methionine-induced sulfonium accumulation in a dinoflagellate Gonyaulax polyedra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitl2ksLc%3D&md5=56be0691e21fb61bbb0978a013b5114eCAS |
[23] R. White, Analysis of dimethyl sulfonium compoounds in marine algae. J. Mar. Res. 1982, 40, 529.
| 1:CAS:528:DyaL38Xlt1els7g%3D&md5=1657d1ce54c874e8423abb24fca257e7CAS |
[24] D. Nedwell, M. Shabbeer, R. Harrison, Dimethyl sulphide in North Sea waters and sediments. Estuar. Coast. Shelf Sci. 1994, 39, 209.
| Dimethyl sulphide in North Sea waters and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVWhtLs%3D&md5=fc3873053f20f9e079273550c59f329bCAS |
[25] G. DiTullio, J. Grebmeier, K. Arrigo, M. Lizotte, D. Robinson, A. Leventer, J. Barry, M. Van Woert, R. B. Dunbar, Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 2000, 404, 595.
| Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Gkt7s%3D&md5=99103d17a86276d25aabe80e45619481CAS | 10766240PubMed |
[26] R. P. Kiene, B. F. Taylor, Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl. Environ. Microbiol. 1988, 54, 2208.
| 1:CAS:528:DyaL1cXlvFKls7k%3D&md5=a6336844ff32beb6f6328aef000232c6CAS | 16347732PubMed |
[27] O. Hadas, R. Pinkas, Sulphate reduction in the hypolimnion and sediments of Lake Kinneret, Israel. Freshw. Biol. 1995, 33, 63.
| Sulphate reduction in the hypolimnion and sediments of Lake Kinneret, Israel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslGjt70%3D&md5=9790578a55127921b934f83a7ea74815CAS |
[28] A. Amrani, A. L. Sessions, J. F. Adkins, Compound-specific δ34S analysis of volatile organics by coupled GC/multicollector-ICPMS. Anal. Chem. 2009, 81, 9027.
| Compound-specific δ34S analysis of volatile organics by coupled GC/multicollector-ICPMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ahtbbP&md5=3c4b4f6081d65a65fa1a163dd02e2083CAS | 19807109PubMed |
[29] W. Said‐Ahmad, A. Amrani, A sensitive method for the sulfur isotope analysis of dimethyl sulfide and dimethylsulfoniopropionate in seawater. Rapid Commun. Mass Spectrom. 2013, 27, 2789.
| A sensitive method for the sulfur isotope analysis of dimethyl sulfide and dimethylsulfoniopropionate in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCqtbrE&md5=eee5e86287777fa08318201f0d2bea48CAS | 24214865PubMed |
[30] Standard Methods for the Examination of Water and Wastewater, 22th edn 2012 (American Public Health Association: Washington, DC).
[31] D. A. del Valle, D. Slezak, C. M. Smith, A. N. Rellinger, D. J. Kieber, R. P. Kiene, Effect of acidification on preservation of DMSP in seawater and phytoplankton cultures: Evidence for rapid loss and cleavage of DMSP in samples containing Phaeocystis sp. Mar. Chem. 2011, 124, 57.
| Effect of acidification on preservation of DMSP in seawater and phytoplankton cultures: Evidence for rapid loss and cleavage of DMSP in samples containing Phaeocystis sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCgtLc%3D&md5=67e58e2235917143c2d978a443794684CAS |
[32] B. F. Taylor, P. T. Visscher, Metabolic pathways involved in DMSP degradation, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 265–276 (Springer: New York).
[33] S. M. Turner, G. Malin, P. S. Liss, D. S. Harbour, P. M. Holligan, The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters1. Limnol. Oceanogr. 1988, 33, 364.
| The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFygt7s%3D&md5=deae18f647e05dba7cb4a990e561c36dCAS |
[34] R. P. Kiene, L. J. Linn, The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim. Cosmochim. Acta 2000, 64, 2797.
| The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVKktL8%3D&md5=0187e2eab0851b1bf8fc20c33d7c3f4bCAS |
[35] J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
| Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=e41afa264a0a44bd66f7dcc3f8a02455CAS |
[36] N. Knossow, B. Blonder, W. Eckert, A. V. Turchyn, G. Antler, A. Kamyshny, Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations. Geochem. Trans. 2015, 16, 7.
| Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.Crossref | GoogleScholarGoogle Scholar | 26140024PubMed |
[37] M. Steinke, G. Malin, S. D. Archer, P. H. Burkill, P. S. Liss, DMS production in a coccolithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases. Aquat. Microb. Ecol. 2002, 26, 259.
| DMS production in a coccolithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases.Crossref | GoogleScholarGoogle Scholar |
[38] B. P. Lomans, R. Maas, R. Luderer, H. J. Op den Camp, A. Pol, C. van der Drift, G. D. Vogels, Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl. Environ. Microbiol. 1999, 65, 3641.
| 1:CAS:528:DyaK1MXltVOlt7o%3D&md5=a7e97df944e11b3876daa2b30480b9edCAS | 10427061PubMed |
[39] H. Hu, S. E. Mylon, G. Benoit, Volatile organic sulfur compounds in a stratified lake. Chemosphere 2007, 67, 911.
| Volatile organic sulfur compounds in a stratified lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsrw%3D&md5=937ce7b473e787f17823d5a30249478bCAS | 17188324PubMed |
[40] P. T. Visscher, L. K. Baumgartner, D. H. Buckley, D. R. Rogers, M. E. Hogan, C. D. Raleigh, K. A. Turk, D. J. Des Marais, Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures. Environ. Microbiol. 2003, 5, 296.
| Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1yktb0%3D&md5=d058cdfdcbd1deade0aaaa2d14a57716CAS | 12662177PubMed |
[41] J. Gun, A. Goifman, I. Shkrob, A. Kamyshny, B. Ginzburg, O. Hadas, I. Dor, A. D. Modestov, O. Lev, Formation of polysulfides in an oxygen rich freshwater lake and their role in the production of volatile sulfur compounds in aquatic systems. Environ. Sci. Technol. 2000, 34, 4741.
| Formation of polysulfides in an oxygen rich freshwater lake and their role in the production of volatile sulfur compounds in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFemtLY%3D&md5=308a2e85d79b6a5ac6516bb8eebbd10cCAS |
[42] B. P. Lomans, P. Leijdekkers, J. J. Wesselink, P. Bakkes, A. Pol, C. van der Drift, H. J. M. Op den Camp, Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl. Environ. Microbiol. 2001, 67, 4017.
| Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslWju7g%3D&md5=c25ceba11d36b8d2d003dfb1b30ae3ddCAS | 11525999PubMed |
[43] E. G. Stets, M. E. Hines, R. P. Kiene, Thiol methylation potential in anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling. FEMS Microbiol. Ecol. 2004, 47, 1.
| Thiol methylation potential in anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVynsg%3D%3D&md5=e116198108204fd071dc5d8e4f29c9cbCAS | 19712341PubMed |
[44] R. C. Greene, Biosynthesis of dimethyl-beta-propiothetin. J. Biol. Chem. 1962, 237, 2251.
| 1:CAS:528:DyaF38XksVCgt7o%3D&md5=f46516d6bba6f361604c5e7bb2a67b91CAS | 13901535PubMed |
[45] R. C. van Leerdam, F. A. De Bok, B. P. Lomans, A. J. Stams, P. N. Lens, A. J. Janssen, Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity. Environ. Toxicol. Chem. 2006, 25, 3101.
| Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSmsLvK&md5=0c1d48ddf83b10878523e73a707ff155CAS | 17220077PubMed |
[46] R. P. Kiene, R. S. Oremland, A. Catena, L. G. Miller, D. G. Capone, Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 1986, 52, 1037.
| 1:CAS:528:DyaL2sXptVOq&md5=82ca3a824ea54677958e5379f2917956CAS | 16347202PubMed |
[47] M. Adler, W. Eckert, O. Sivan, Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore‐water profiles. Limnol. Oceanogr. 2011, 56, 1525.
| Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore‐water profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrurjM&md5=31c41240fd6bbbac4a8076b500cb8399CAS |