Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain
Judit Kalman A D , Kai B. Paul A B , Farhan R. Khan C , Vicki Stone A and Teresa F. Fernandes A DA School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
B Blue Frog Scientific, Scott House, South St Andrews Street, Edinburgh, EH2 2AZ, UK.
C Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University, Universitetsvej 1, PO Box 260, DK-4000 Roskilde, Denmark.
D Corresponding authors. Emails: judit.kalman@uca.es; t.fernandes@hw.ac.uk
Environmental Chemistry 12(6) 662-672 https://doi.org/10.1071/EN15035
Submitted: 17 February 2015 Accepted: 20 May 2015 Published: 6 October 2015
Environmental context. Nanoparticles may be passed from primary producers to predators higher up the food chain, but little is currently known about this transfer. We studied the accumulation dynamics of silver nanoparticles by algae, and then from algae to zooplankton. Using the biodynamic approach, we reconstructed the accumulation process to show that diet is the primary route of uptake for silver nanoparticles.
Abstract. This study investigated the bioaccumulation dynamics of silver nanoparticles (Ag NPs) with different coatings (polyvinyl pyrrolidone, polyethylene glycol and citrate), in comparison with aqueous Ag (added as AgNO3), in a simplified freshwater food chain comprising the green alga Chlorella vulgaris and the crustacean Daphnia magna. Algal uptake rate constants (ku) and membrane transport characteristics (binding site density, transporter affinity and strength of binding) were determined after exposing algae to a range of either aqueous Ag or Ag NP concentrations. In general, higher ku values were related to higher toxicity in the algae. Transmission electron microscopy images were used to investigate the internalisation of Ag NPs in algal cells following exposure to low concentrations for 72 h (mimicking inhibition tests) or high concentrations for 4 h (mimicking preparation for daphnia dietary exposure). Ag NPs were only visualised in algal cells exposed to high Ag NP concentrations. To establish D. magna biodynamic model constants, organisms were fed Ag-contaminated algae and depurated for 96 h. Assimilation efficiencies ranged from 10 to 25 % and the elimination of accumulated Ag followed a two-compartmental model, indicating lower loss rate constants for polyvinyl pyrrolidone-, and polyethylene glycol-coated Ag NPs. Biodynamic model results revealed that in most cases, food is the dominant pathway of Ag uptake in D. magna. Despite the predicted low steady-state body burdens in D. magna, dietary uptake of Ag was possible from aqueous and particulate forms of Ag.
Additional keywords: Chlorella vulgaris, Daphnia magna, dietary uptake, internalization.
References
[1] T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133.| Nanoparticle silver released into water from commercially available sock fabrics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlKjsL4%3D&md5=d867e7173434c97a9a54e8b1a38d0ae0CAS | 18589977PubMed |
[2] C. M. Zhao, W. X. Wang, Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ. Toxicol. Chem. 2011, 30, 885.
| Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFaitL4%3D&md5=9977ad3c059db19eca747241b73f1914CAS | 21191880PubMed |
[3] S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W. H. De Jong, M. Van Zijverden, A. J. A. M. Sips, R. E. Geertsma, Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3, 109.
| Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFOmur0%3D&md5=a9b508c3a7f4cb837e2df86a5110c7e9CAS |
[4] A. Tessier, D. R. Turner, Metal Speciation and Bioavailability in Aquatic Systems 1995 (Wiley: Chichester, UK).
[5] S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005, 39, 1921.
| Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2ntLY%3D&md5=d5c32a120adeb50108d068cdb4a5e158CAS | 15871220PubMed |
[6] M. N. Croteau, S. N. Luoma, Predicting dietborne metal toxicity from metal influxes. Environ. Sci. Technol. 2009, 43, 4915.
| Predicting dietborne metal toxicity from metal influxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kmsbg%3D&md5=18cb8a3029dda796c3300c1b290cb4d4CAS | 19673285PubMed |
[7] F. R. Khan, K. B. Paul, A. D. Dyboswka, E. Valsami-Jones, J. R. Lead, V. Stone, T. F. Fernandes, Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modelling approaches. Environ. Sci. Technol. 2015, 49, 4389.
| Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modelling approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktVGrs70%3D&md5=4b897811c4944cfe63b6a454a4f7c4c6CAS | 25756614PubMed |
[8] C. M. Zhao, W. X. Wang, Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2010, 44, 7699.
| Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77P&md5=e3189a7c8efa52af83cdf8aa84fca7caCAS | 20831153PubMed |
[9] M. N. Croteau, S. K. Misra, S. N. Luoma, E. Valsami-Jones, Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ. Sci. Technol. 2011, 45, 6600.
| Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVSrsr8%3D&md5=a4ee8ec740e0511d13e88bb4d6a9874bCAS | 21667957PubMed |
[10] F. R. Khan, S. K. Misra, J. García-Alonso, B. D. Smith, S. Strekopytov, P. S. Rainbow, S. N. Luoma, E. Valsami-Jones, Bioaccumulation dynamics and modelling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver. Environ. Sci. Technol. 2012, 46, 7621.
| Bioaccumulation dynamics and modelling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFersrg%3D&md5=e32e1ba93a68dcc01ef7bf3fe48b22dcCAS | 22697255PubMed |
[11] L. Dai, K. Syberg, G. T. Banta, H. Selck, V. E. Forbes, Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macoma balthica. ACS Sustain. Chem.& Eng. 2013, 1, 760.
| 1:CAS:528:DC%2BC3sXmslams7w%3D&md5=f7bb0239745121546308ca95c5085abbCAS |
[12] N. R. Bury, J. Shaw, C. Glover, C. Hogstrand, Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comp. Biochem. Phys. C 2002, 133, 259.
| 1:STN:280:DC%2BD38nmsFGgtQ%3D%3D&md5=fc500fd658649472955e27a2fafc6f7fCAS |
[13] K. A. C. de Schamphelaere, C. R. Janssen, A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ. Sci. Technol. 2002, 36, 48.
| A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSgtbY%3D&md5=b67781f0a03709537485c89a9c57b09cCAS |
[14] E. M. Leonard, C. M. Wood, Acute toxicity, critical body residues, Michaelis–Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex. Comp. Biochem. Phys. C 2013, 158, 10.
| 1:CAS:528:DC%2BC3sXhtVOqsr%2FI&md5=59f7455cf2eab36cf01a3996d5a5428eCAS |
[15] K. M. Newton, H. L. Puppala, C. L. Kitchens, V. L. Colvin, S. J. Klaine, Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ. Chem. 2013, 32, 2356.
| Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOku7nI&md5=8c639ad3e6a7a9681732878f7e0eb62bCAS |
[16] A. Oukarroum, S. Bras, F. Perreault, R. Popovic, Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2012, 78, 80.
| Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVamsrc%3D&md5=3169c2d644465d69331b1cc450c8eacdCAS | 22138148PubMed |
[17] M. Tuominen, E. Schultz, Toxicity and stability of silver nanoparticles to the green alga Pseudokirchneriella subcapitata in boreal freshwater samples and growth media. Nanomaterials Environ. 2013, 1, 48.
| Toxicity and stability of silver nanoparticles to the green alga Pseudokirchneriella subcapitata in boreal freshwater samples and growth media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSltrnF&md5=e49b057c68dacb68a18fb22c82252894CAS |
[18] B. M. Angel, G. E. Batley, C. V. Jarolimek, N. J. Rogers, The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 2013, 93, 359.
| The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12rtrw%3D&md5=8778f9d6ad2fb8fdafd2e1ca2c069b6fCAS | 23732009PubMed |
[19] F. Ribeiro, J. A. Gallego-Urrea, K. Jurkschat, A. Crossley, M. Hassellöv, C. Taylor, A. M. V. M. Soares, S. Loureiro, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 2014, 466–467, 232.
| Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio.Crossref | GoogleScholarGoogle Scholar | 23895786PubMed |
[20] F. R. Khan, K. Schmuecking, S. H. Krishnadasan, D. Berhanu, B. D. Smith, J. C. DeMello, P. S. Rainbow, S. N. Luoma, E. Valsami-Jones, Dietary bioavailability of cadmium presented to the gastropod Peringia ulvae as quantum dots and in ionic form. Environ. Toxicol. Chem. 2013, 32, 2629.
[21] C. M. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
| Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlCkuro%3D&md5=6d13a1a5bdea7ba4119f8d6cdba56a79CAS |
[22] C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
| Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=606e49ee26b9e4f46c59b3f37897ef02CAS | 22339502PubMed |
[23] G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
| Transformations of nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=202ab7784206ba66e3867533b5046439CAS | 22582927PubMed |
[24] N. von Moos, P. Bowen, V. I. Slaveykova, Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ. Sci. Nano 2014, 1, 214.
| Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2hs7k%3D&md5=712b9c81c134be6101f0c05937f1a78dCAS |
[25] S. N. Luoma, P. S. Rainbow, Metal Contamination in Aquatic Environments: Science and Lateral management 2008 (Cambridge University Press: Cambridge, UK).
[26] JM (Jaworski’s Medium). Freshwater algae 2015 (CCAP (Culture Collection of Algae and Protozoa), Dunstaffnage Marine Laboratory: Oban, Argyll, UK) Available at http://www.ccap.ac.uk/media/documents/JM.pdf [Verified 20 July 2015].
[27] A. J. Kennedy, M. S. Hull, A. J. Bednar, J. D. Goss, J. C. Gunter, J. L. Bouldin, P. J. Vikesland, J. A. Steevens, Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ. Sci. Technol. 2010, 44, 9571.
| Fractionating nanosilver: importance for determining toxicity to aquatic test organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqsL7E&md5=0f1dab4c097ab61fd9c78a4fd25ebf16CAS | 21082828PubMed |
[28] M. N. Croteau, A. D. Dybowska, S. N., luoma, S. K., Misra, E., Valsami-Jones, Isotopically modified nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures. Environ. Chem. 2014, 11, 247.
| Isotopically modified nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVajsL3K&md5=4f0ac0c4a4daf7c5a1eadcc0beb54257CAS |
[29] Test number 202. OECD Guidelines for the Testing of Chemicals, Section 2 2004 (OECD Publishing: Paris)
[30] Test number 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2 2011 (OECD Publishing: Paris)
[31] I. K. S. Lam, W. X. Wang, Accumulation and elimination of aqueous and dietary silver in Daphnia magna. Chemosphere 2006, 64, 26.
| Accumulation and elimination of aqueous and dietary silver in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cnur0%3D&md5=fc066f2b91607ab85ca69429aa24dd1eCAS |
[32] S. Niyogi, C. Wood, Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol. 2004, 38, 6177.
| Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVOlt7c%3D&md5=ad0609584bd9e4a66aa9645b18351ad7CAS | 15597870PubMed |
[33] G. J. Smith, A. R. Flegal, Silver in San Francisco Bay waters. Estuaries 1993, 16, 547.
| Silver in San Francisco Bay waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisl2nsLY%3D&md5=d1fbf339f70f268c117d42a4f221cbb8CAS |
[34] R. Eisler, Silver Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. US National Biological Service, Biological Science Report 32 1981 (US Department of the Interior: Washington, DC).
[35] J. H. Martin, G. A. Knauer, The elemental composition of plankton. Geochim. Cosmochim. Acta 1973, 37, 1639.
| The elemental composition of plankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltVantbo%3D&md5=5f29aa1d505f4542366a6101de6f8e37CAS |
[36] F. Gottschalk, T. Sonderer, B. Nowack, Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
| Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=f78c2b5d2a75facc712dbe818515c482CAS | 20000512PubMed |
[37] R. Guan, W. X. Wang, Multiphase biokinetic modelling of cadmium accumulation in Daphnia magna from dietary and aqueous sources. Environ. Toxicol. Chem. 2006, 25, 2840.
| Multiphase biokinetic modelling of cadmium accumulation in Daphnia magna from dietary and aqueous sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFygsr%2FK&md5=3dc1ab9a167969bf732485c576c48bd2CAS | 17089705PubMed |
[38] M. Tejamaya, I. Römer, R. C. Merrifield, J. R. Lead, Stability of citrate-, PVP-, and PEG-coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012, 46, 7011.
| Stability of citrate-, PVP-, and PEG-coated silver nanoparticles in ecotoxicology media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFGrsb8%3D&md5=9ca1afdff478a27e090b0a64e32883a0CAS | 22432856PubMed |
[39] A. J. Miao, Z. Luo, C. S. Chen, W. C. Chin, P. H. Santschi, A. Quigg, Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 2010, 5, e15196.
| Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtlSqug%3D%3D&md5=181f5fc85af082af619e594c87108215CAS | 21203552PubMed |
[40] F. Perreault, A. Oukarroum, S. Pedroso-Melegari, W. G. Matias, R. Popovic, Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 2012, 87, 1388.
| Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGksLs%3D&md5=7254e610ce6f83cdbe6cd4392bd1893aCAS | 22445953PubMed |
[41] Z. Wang, J. Li, J. Zhao, B. Xing, Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ. Sci. Technol. 2011, 45, 6032.
| Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVOns7w%3D&md5=c2a66347baa9f4fcb02345b6de6d1e1fCAS | 21671609PubMed |
[42] E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959.
| Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOqt7nO&md5=755432a47d7e3de51aa8c899bb99feb3CAS | 19192825PubMed |
[43] M. C. Stensberg, R. Madangopal, G. Yale, Q. Wei, H. Ochoa-Acuña, A. Wei, E. S. McLamore, J. Rickus, D. M. Porterfield, M. S. Sepúlveda, Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 2014, 8, 833.
| Silver nanoparticle-specific mitotoxicity in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemtbfK&md5=a0240a017fccf3654a89d0341e8f379eCAS | 23927462PubMed |
[44] L. K. Braydich-Stolle, S. Hussain, J. J. Schlager, M. C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412.
| In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wis7zJ&md5=daa1a3fec709a3ae7313f129df359ba8CAS |
[45] L. K. Braydich-Stolle, B. Lucas, A. Schrand, R. C. Murdock, T. Lee, J. J. Schlager, S. M. Hussain, M. C. Hofmann, Silver nanoparticles disrupt GDNF/Fyn kinase signalling in spermatogonial stem cells. Toxicol. Sci. 2010, 116, 577.
| Silver nanoparticles disrupt GDNF/Fyn kinase signalling in spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyrsr4%3D&md5=46da8d2ecc4c653d5fed2888d5fb6f74CAS | 20488942PubMed |
[46] C. Marambio-Jones, E. M. V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531.
| A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFOrur0%3D&md5=1e57bc495c3c65b96eeb9eedf9127dcdCAS |
[47] J. S. Teodoro, A. M. Simões, F. V. Duarte, A. P. Rolo, R. C. Murdoch, S. M. Hussain, C. M. Palmeira, Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol. In Vitro 2011, 25, 664.
| Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFahsLo%3D&md5=fa5e98d8a657302e96de01dbd9bf2bd8CAS | 21232593PubMed |
[48] G. J. Zhou, F. Q. Peng, L. J. Zhang, G. G. Ying, Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 2012, 19, 2918.
| Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyns7%2FN&md5=3b90e24277e3f083cd9a1e9542d864a7CAS |
[49] B. Volesky, Bisorption of Heavy Metals 1990 (CRC Press: Boca Raton, FL).
[50] A. J. Miao, K. A. Schwehr, C. Xu, S. J. Zhang, Z. Luo, A. Quigg, P. H. Santschi, The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut. 2009, 157, 3034.
| The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKksb3O&md5=724c0c5ba8e0f36036c9d101ba2d518bCAS | 19560243PubMed |
[51] S. N. Luoma, F. R. Khan, M. N. Croteau, Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes. Front. Nanosci 2014, 7, 157.
| Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes.Crossref | GoogleScholarGoogle Scholar |
[52] S. Kittler, C. Greulich, J. Diendorf, M. Köller, M. Epple, Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010, 22, 4548.
| Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsV2ltbo%3D&md5=44c82439c8a4ad238e873ef96b2b0541CAS |
[53] W. X. Wang, N. S. Fisher, Delineating metal accumulation pathways for marine invertebrates. Sci. Total Environ. 1999, 237–238, 459.
| Delineating metal accumulation pathways for marine invertebrates.Crossref | GoogleScholarGoogle Scholar |
[54] J. McTeer, A. P. Dean, K. N. White, J. K. Pittman, Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology 2014, 8, 305.
| Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemurrK&md5=aaaa58925ed3dc6f345e819623b7c810CAS | 23421707PubMed |
[55] G. Taylor, D. J. Baird, A. M. V. M. Soares, Surface binding of contaminants by algae: consequences for lethal toxicity and feeding to Daphnia magna Straus. Environ. Toxicol. Chem. 1998, 17, 412.
| Surface binding of contaminants by algae: consequences for lethal toxicity and feeding to Daphnia magna Straus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1yks7g%3D&md5=92d65445e5749486e26059f17fc3544bCAS |
[56] L. Maltby, T. J. Kedwards, V. E. Forbes, K. Grasman, J. E. Kammenga, W. R. Munns, Jr, A. H. Ringwood, J. S. Weis, S. N. Wood, Linking individual-level responses and population-level consequences, in Ecological Variability: Separating Natural from Anthropogenic Causes of Ecosystem Impairment (Eds D. J. Baird, G. A. Burton Jr) 2001, pp. 27–82 (SETAC: Pensacola, FL).
[57] C. M. Zhao, W. X. Wang, Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 2012, 6, 361.
| Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVehsLo%3D&md5=6f951751bc7bb9bdac72df64471e29f6CAS | 21591875PubMed |